673 research outputs found
The cluster of galaxies Abell 376
We present a dynamical analysis of the galaxy cluster Abell 376 based on a
set of 73 velocities, most of them measured at Pic du Midi and Haute-Provence
observatories and completed with data from the literature. Data on individual
galaxies are presented and the accuracy of the determined velocities is
discussed as well as some properties of the cluster. We obtained an improved
mean redshift value z=0.0478^{+0.005}_{-0.006} and velocity dispersion
sigma=852^{+120}_{-76}km/s. Our analysis indicates that inside a radius of
900h_{70}^{-1}kpc (15 arcmin) the cluster is well relaxed without any
remarkable feature and the X-ray emission traces fairly well the galaxy
distribution. A possible substructure is seen at 20 arcmin from the centre
towards the Southwest direction, but is not confirmed by the velocity field.
This SW clump is, however, kinematically bound to the main structure of Abell
376. A dense condensation of galaxies is detected at 46 arcmin (projected
distance 2.6h_{70}^{-1}Mpc) from the centre towards the Northwest and analysis
of the apparent luminosity distribution of its galaxies suggests that this
clump is part of the large scale structure of Abell 376. X-ray spectroscopic
analysis of ASCA data resulted in a temperature kT = 4.3+/-0.4 keV and metal
abundance Z = 0.32+/-0.08 Z_solar. The velocity dispersion corresponding to
this temperature using the T_X-sigma scaling relation is in agreement with the
measured galaxies velocities.Comment: 11 pages, 10 figures, accepted for publication in A&
Understanding anharmonicity in fcc Materials: From its origin to ab initio strategies beyond the quasiharmonic approximation
We derive the Gibbs energy including the anharmonic contribution due to phonon-phonon interactions for an extensive set of unary fcc metals (Al, Ag, Au, Cu, Ir, Ni, Pb, Pd, Pt, Rh) by combining density-functional-theory (DFT) calculations with efficient statistical sampling approaches. We show that the anharmonicity of the macroscopic system can be traced back to the anharmonicity in local pairwise interactions. Using this insight, we derive and benchmark a highly efficient approach which allows the computation of anharmonic contributions using a few T=0K DFT calculations only. © Published by the American Physical Society 2015
Effect of Aqueous Ozone on the NF-κB System
Ozone has been proposed as an alternative oral antiseptic in dentistry, due to its antimicrobial power reported for gaseous and aqueous forms, the latter showing a high biocompatibility with mammalian cells. New therapeutic strategies for the treatment of periodontal disease and apical periodontitis should consider not only antibacterial effects, but also their influence on the host immune response. Therefore, our aim was to investigate the effect of aqueous ozone on the NF-κB system, a paradigm for inflammationassociated signaling/transcription. We showed that NF-κB activity in oral cells stimulated with TNF, and in periodontal ligament tissue from root surfaces of periodontally damaged teeth, was inhibited following incubation with ozonized medium. Under this treatment, IκBalpah proteolysis, cytokine expression, and κB-dependent transcription were prevented. Specific ozonized amino acids were shown to represent major inhibitory components of ozonized medium. In summary, our study establishes a condition under which aqueous ozone exerts inhibitory effects on the NF-κB system, suggesting that it has an antiinflammatory capacity
Ab initio explanation of disorder and off-stoichiometry in Fe-Mn-Al-C kappa carbides
Carbides play a central role for the strength and ductility in many
materials. Simulating the impact of these precipitates on the mechanical
performance requires the knowledge about their atomic configuration. In
particular, the C content is often observed to substantially deviate from the
ideal stoichiometric composition. In the present work, we focus on Fe-Mn-Al-C
steels, for which we determined the composition of the nano-sized kappa
carbides (Fe,Mn)3AlC by atom probe tomography (APT) in comparison to larger
precipitates located in grain boundaries. Combining density functional theory
with thermodynamic concepts, we first determine the critical temperatures for
the presence of chemical and magentic disorder in these carbides. Secondly, the
experimentally observed reduction of the C content is explained as a compromise
between the gain in chemical energy during partitioning and the elastic strains
emerging in coherent microstructures
Temperature Dependent Magnon-Phonon Coupling in bcc Fe from Theory and Experiment
An ab initio based framework for quantitatively assessing the phonon contribution due to magnon-phonon interactions and lattice expansion is developed. The theoretical results for bcc Fe are in very good agreement with high-quality phonon frequency measurements. For some phonon branches, the magnon-phonon interaction is an order of magnitude larger than the phonon shift due to lattice expansion, demonstrating the strong impact of magnetic short-range order even significantly above the Curie temperature. The framework closes the previous simulation gap between the ferro- and paramagnetic limits
Recommended from our members
Role of disorder when upscaling magnetocaloric Ni-Co-Mn-Al Heusler alloys from thin films to ribbons
Research in functional magnetic materials often employs thin films as model systems for finding new chemical compositions with promising properties. However, the scale-up of thin films towards bulk-like structures is challenging, since the material synthesis conditions are entirely different for thin films and e.g. rapid quenching methods. As one of the consequences, the type and degree of order in thin films and melt-spun ribbons are usually different, leading to different magnetic properties. In this work, using the example of magnetocaloric Ni-Co-Mn-Al melt-spun ribbons and thin films, we show that the excellent functional properties of the films can be reproduced also in ribbons, if an appropriate heat treatment is applied, that installs the right degree of order in the ribbons. We show that some chemical disorder is needed to get a pronounced and sharp martensitic transition. Increasing the order with annealing improves the magnetic properties only up to a point where selected types of disorder survive, which in turn compromise the magnetic properties. These findings allow us to understand the impact of the type and degree of disorder on the functional properties, paving the way for a faster transfer of combinatorial thin film research towards bulk-like materials for magnetic Heusler alloys
Random phase approximation up to the melting point: Impact of anharmonicity and nonlocal many-body effects on the thermodynamics of Au
Application of the generalized gradient corrected functional within standard density-functional theory results in a dramatic failure for Au, leading to divergent thermodynamic properties well below the melting point. By combining the upsampled thermodynamic integration using Langevin dynamics technique with the random phase approximation, we show that inclusion of nonlocal many-body effects leads to a stabilization and to an excellent agreement with experiment. © Published by the American Physical Society
Robust Bain distortion in the premartensite phase of platinum substituted Ni2MnGa magnetic shape memory alloy
The premartensite phase of shape memory and magnetic shape memory alloys
(MSMAs) is believed to be a precursor state of the martensite phase with
preserved austenite phase symmetry. The thermodynamic stability of the
premartensite phase and its relation to the martensitic phase is still an
unresolved issue, even though it is critical to the understanding of the
functional properties of MSMAs. We present here unambiguous evidence for
macroscopic symmetry breaking leading to robust Bain distortion in the
premartensite phase of 10% Pt substituted Ni2MnGa. We show that the robust Bain
distorted premartensite (T2) phase results from another premartensite (T1)
phase with preserved cubic-like symmetry through an isostructural phase
transition. The T2 phase finally transforms to the martensite phase with
additional Bain distortion on further cooling. Our results demonstrate that the
premartensite phase should not be considered as a precursor state with the
preserved symmetry of the cubic austenite phase
- …