224 research outputs found

    Determination of the lowest energy structure of Ag8_8 from first-principles calculations

    Full text link
    The ground-state electronic and structural properties, and the electronic excitations of the lowest energy isomers of the Ag8_8 cluster are calculated using density functional theory (DFT) and time-dependent DFT (TDDFT) in real time and real space scheme, respectively. The optical spectra provided by TDDFT predict that the D2d_{2d} dodecahedron isomer is the structural minimum of Ag8_8 cluster. Indeed, it is borne out by the experimental findings.Comment: 4 pages, 2 figures. Accepted in Physical Review A as a brief repor

    Differential contributions of inferior frontal gyrus subregions to sentence processing guided by intonation

    Get PDF
    Auditory sentence comprehension involves processing content (semantics), grammar (syntax), and intonation (prosody). The left inferior frontal gyrus (IFG) is involved in sentence comprehension guided by these different cues, with neuroimaging studies preferentially locating syntactic and semantic processing in separate IFG subregions. However, this regional specialisation has not been confirmed with a neurostimulation method. Consequently, the causal role of such a specialisation remains unclear. This study probed the role of the posterior IFG (pIFG) for syntactic processing and the anterior IFG (aIFG) for semantic processing with repetitive transcranial magnetic stimulation (rTMS) in a task that required the interpretation of the sentence's prosodic realisation. Healthy participants performed a sentence completion task with syntactic and semantic decisions, while receiving 10 Hz rTMS over either left aIFG, pIFG, or vertex (control). Initial behavioural analyses showed an inhibitory effect on accuracy without task-specificity. However, electric field simulations revealed differential effects for both subregions. In the aIFG, stronger stimulation led to slower semantic processing, with no effect of pIFG stimulation. In contrast, we found a facilitatory effect on syntactic processing in both aIFG and pIFG, where higher stimulation strength was related to faster responses. Our results provide first evidence for the functional relevance of left aIFG in semantic processing guided by intonation. The stimulation effect on syntactic responses emphasises the importance of the IFG for syntax processing, without supporting the hypothesis of a pIFG-specific involvement. Together, the results support the notion of functionally specialised IFG subregions for diverse but fundamental cues for language processing

    Adaptive plasticity in the healthy reading network investigated through combined neurostimulation and neuroimaging

    Get PDF
    The reading network in the human brain comprises several regions, including the left inferior frontal cortex (IFC), ventral occipito-temporal cortex (vOTC) and dorsal temporo-parietal cortex (TPC). The left TPC is crucial for phonological decoding, i.e., for learning and retaining sound-letter mappings. Here, we tested the causal contribution of this area for reading with repetitive transcranial magnetic stimulation (rTMS) and explored the response of the reading network using functional magnetic resonance imaging (fMRI). 28 healthy adult readers overtly read simple and complex words and pseudowords during fMRI after effective or sham TMS over the left TPC. Behaviorally, effective stimulation slowed pseudoword reading. A multivariate pattern analysis showed a shift in activity patterns in the left IFC for pseudoword reading after effective relative to sham TMS. Furthermore, active TMS led to increased effective connectivity from the left vOTC to the left TPC, specifically for pseudoword processing. The observed changes in task-related activity and connectivity suggest compensatory reorganization in the reading network following TMS-induced disruption of the left TPC. Our findings provide first evidence for a causal role of the left TPC for overt pseudoword reading and emphasize the relevance of functional interactions in the healthy reading network for successful pseudoword processing

    Acoustical-Mode-Driven Electron-Phonon Coupling in Transition-Metal Diborides

    Full text link
    We show that the electron-phonon coupling in the transition-metal diborides NbB2 and TaB2 is dominated by the longitudinal acoustical (LA) mode, in contrast to the optical E_{2g} mode dominated coupling in MgB2. Our ab initio results, described in terms of phonon dispersion, linewidth, and partial electron-phonon coupling along Gamma to A, also show that (i) NbB2 and TaB2 have a relatively weak electron-phonon coupling, (ii) the E_{2g} linewidth is an order of magnitude larger in MgB2 than in NbB2 or TaB2, (iii) the E_{2g} frequency in NbB2 and TaB2 is considerably higher than in MgB2, and (iv) the LA frequency at A for TaB2 is almost half of that of MgB2 or NbB2.Comment: 4 pages, 4 figures, and 1 tabl

    Relativistic separable dual-space Gaussian Pseudopotentials from H to Rn

    Full text link
    We generalize the concept of separable dual-space Gaussian pseudopotentials to the relativistic case. This allows us to construct this type of pseudopotential for the whole periodic table and we present a complete table of pseudopotential parameters for all the elements from H to Rn. The relativistic version of this pseudopotential retains all the advantages of its nonrelativistic version. It is separable by construction, it is optimal for integration on a real space grid, it is highly accurate and due to its analytic form it can be specified by a very small number of parameters. The accuracy of the pseudopotential is illustrated by an extensive series of molecular calculations

    Noncollinear magnetic ordering in small Chromium Clusters

    Get PDF
    We investigate noncollinear effects in antiferromagnetically coupled clusters using the general, rotationally invariant form of local spin-density theory. The coupling to the electronic degrees of freedom is treated with relativistic non-local pseudopotentials and the ionic structure is optimized by Monte-Carlo techniques. We find that small chromium clusters (N \le 13) strongly favor noncollinear configurations of their local magnetic moments due to frustration. This effect is associated with a significantly lower total magnetization of the noncollinear ground states, ameliorating the disagreement between Stern-Gerlach measurements and previous collinear calculations for Cr_{12} and Cr_{13}. Our results further suggest that the trend to noncollinear configurations might be a feature common to most antiferromagnetic clusters.Comment: 9 pages, RevTeX plus .eps/.ps figure

    Degradation levels of continuous speech affect neural speech tracking and alpha power differently

    Get PDF
    Making sense of a poor auditory signal can pose a challenge. Previous attempts to quantify speech intelligibility in neural terms have usually focused on one of two measures, namely low-frequency speech-brain synchronization or alpha power modulations. However, reports have been mixed concerning the modulation of these measures, an issue aggravated by the fact that they have normally been studied separately. We present two MEG studies analyzing both measures. In study 1, participants listened to unimodal auditory speech with three different levels of degradation (original, 7-channel and 3-channel vocoding). Intelligibility declined with declining clarity, but speech was still intelligible to some extent even for the lowest clarity level (3-channel vocoding). Low-frequency (1-7 Hz) speech tracking suggested a u-shaped relationship with strongest effects for the medium degraded speech (7-channel) in bilateral auditory and left frontal regions. To follow up on this finding, we implemented three additional vocoding levels (5-channel, 2-channel, 1-channel) in a second MEG study. Using this wider range of degradation, the speech-brain synchronization showed a similar pattern as in study 1 but further showed that when speech becomes unintelligible, synchronization declines again. The relationship differed for alpha power, which continued to decrease across vocoding levels reaching a floor effect for 5-channel vocoding. Predicting subjective intelligibility based on models either combining both measures or each measure alone, showed superiority of the combined model. Our findings underline that speech tracking and alpha power are modified differently by the degree of degradation of continuous speech but together contribute to the subjective speech understanding

    fMRI evidence of ‘mirror’ responses to geometric shapes

    Get PDF
    Mirror neurons may be a genetic adaptation for social interaction [1]. Alternatively, the associative hypothesis [2], [3] proposes that the development of mirror neurons is driven by sensorimotor learning, and that, given suitable experience, mirror neurons will respond to any stimulus. This hypothesis was tested using fMRI adaptation to index populations of cells with mirror properties. After sensorimotor training, where geometric shapes were paired with hand actions, BOLD response was measured while human participants experienced runs of events in which shape observation alternated with action execution or observation. Adaptation from shapes to action execution, and critically, observation, occurred in ventral premotor cortex (PMv) and inferior parietal lobule (IPL). Adaptation from shapes to execution indicates that neuronal populations responding to the shapes had motor properties, while adaptation to observation demonstrates that these populations had mirror properties. These results indicate that sensorimotor training induced populations of cells with mirror properties in PMv and IPL to respond to the observation of arbitrary shapes. They suggest that the mirror system has not been shaped by evolution to respond in a mirror fashion to biological actions; instead, its development is mediated by stimulus-general processes of learning within a system adapted for visuomotor control

    BN domains included into carbon nanotubes: role of interface

    Full text link
    We present a density functional theory study on the shape and arrangement of small BN domains embedded into single-walled carbon nanotubes. We show a strong tendency for the BN hexagons formation at the simultaneous inclusion of B and N atoms within the walls of carbon nanotubes. The work emphasizes the importance of a correct description of the BN-C frontier. We suggest that BN-C interface will be formed preferentially with the participation of N-C bonds. Thus, we propose a new way of stabilizing the small BN inclusions through the formation of nitrogen terminated borders. The comparison between the obtained results and the available experimental data on formation of BN plackets within the single walled carbon nanotubes is presented. The mirror situation of inclusion of carbon plackets within single walled BN nanotubes is considered within the proposed formalism. Finally, we show that the inclusion of small BN plackets inside the CNTs strongly affects the electronic character of the initial systems, opening a band gap. The nitrogen excess in the BN plackets introduces donor states in the band gap and it might thus result in a promising way for n-doping single walled carbon nanotubes
    corecore