7 research outputs found

    Modulatory role of catecholamines in the transsynaptic expression of c-fos in the rat medial prefrontal cortex induced by disinhibition of the mediodorsal thalamus: a study employing microdialysis and immunohistochemistry

    No full text
    We studied the interaction of catecholaminergic and thalamic afferents of the medial prefrontal cortex (PFC) by analyzing the effects of catecholamine depletion on thalamus-induced c-fos expression in the PFC of freely moving rats. Thalamic projections to the PFC were pharmacologically activated by perfusing the GABA-A receptor antagonist bicuculline (0.03 mM or 0.1 mM) through a dialysis probe implanted into the mediodorsal thalamic nucleus. Bicuculline perfusion induced Fos-like immunoreactivity in the thalamic projection areas, including the PFC, and in the thalamic nuclei surrounding the dialysis probe. 6-Hydroxydopamine lesions of the ventral tegmental area causing a 70-80% depletion of catecholamines in the PFC did not influence the increase in the number of Fos-like immunoreactive nuclei in the prefrontal cortex in response to thalamic stimulation. However, densitometric image analysis revealed that the intensity of Fos-like immunoreactivity in the PFC of lesioned rats perfused with 0.1 mM bicuculline was higher than in correspondingly treated controls. The behavioral activity to bicuculline perfusion, an increase of non-ambulatory activity (0.03 mM) followed by locomotion and rearing (0.1 mM), was not changed in 6-hydroxydopamine-lesioned rats. It is suggested that the thalamically induced c-fos response is directly mediated by excitatory, presumably glutamatergic, transmission and not indirectly by an activation of catecholaminergic afferents of the PFC. The increase in the intensity of Fos-like immunostaining in strongly stimulated, catecholamine-depleted rats suggests that catecholamines modulate the degree to which thalamic activity can activate the PFC of awake animal

    Heart defects in connexin43-deficient mice

    No full text
    Cardiac malformation in connexin43 (CX43)-disrupted mice is restricted to the junction between right ventricle and outflow tract, even though CX43 is also expressed abundantly elsewhere. We analyzed cardiac morphogenesis in immunohistochemically and hybridohistochemically stained and three-dimensionally reconstructed serial sections of CX43-deficient embryos between embryonic day (ED) 10 and birth. The establishment of the D configuration in the ascending loop of CX43-deficient hearts is markedly retarded, so that the right ventricle retains a craniomedial position and is connected with the outflow tract by a more acute bend in ED10 and ED11 embryos. Because of the subsequent growth of the right ventricle, this condition usually evolves into a D loop, but when it persists, a "crisscross" configuration develops, with the atrioventricular cushions rotated 90 degrees, a horizontal muscular ventricular septum, and a parallel course of the endocardial ridges of the outflow tract. After ED12, large intertrabecular pouches develop at the ventricular side of both shelflike myocardial structures that support the endocardial ridges of the outflow tract, ie, at the location that was earlier characterized by the acute bend between the right ventricle and the outflow tract and that subsequently develops into the anterosuperior leaflet of the tricuspid valve. Retarded development of the D configuration in the ascending loop of the embryonic heart predisposes the myocardium at the junction of the right ventricle and outflow tract to excessive development of intertrabecular pouches during subsequent developmen

    Drugs of abuse and immediate-early genes in the forebrain

    No full text

    Dopaminergic Modulation of Appetitive and Aversive Predictive Learning

    No full text
    corecore