1,363 research outputs found

    Use of kinematic algorithms to distinguish people with chronic non-specific low back pain from asymptomatic subjects: A validation study

    Get PDF
    Objective: To determine whether kinematic algorithms can distinguish subjects with chronic non-specific low back pain from asymptomatic subjects and subjects simulating low back pain, during trunk motion tasks.Design: Comparative cohort study.Subjects: A total of 90 subjects composed 3 groups; 45 chronic non-specific low back pain patients in the CLBP group; 45 asymptomatic controls people in the asymptomatic controls group. 20/45 subjects from the asymptomatic controls group composed the CLBP simulators group as well. Method: During performance of 7 standardized trunk motion tasks 6 spinal segments from the kinematic spine model were recorded by 8 infrared cameras. Two logit scores, for range of motion and speed, were used to investigate differences between the groups. Group allocation based on logit scores was also calculated, allowing the assessment of sensitivity and specificity of the algorithms. Results: For the 90 subjects (pooled data), the logit scores for range of motion and speed demonstrated highly significant differences between groups (p<0.001). The logit score means and standard deviation (SD) values in the asymptomatic group (n = 45) and chronic non-specific low back pain group (n = 45), respectively, were -1.6 (SD 2.6) and 2.8 (SD 2.8) for range of motion and -2.6 (SD 2.5) and 1.2 (SD 1.9) for speed. The sensitivity and specificity (n = 90) for logit score for range of motion were 0.80/0.82 and for logit score for speed were 0.80/0.87, respectively. Conclusion: These results support the validity of using 2 movement algorithms, range of motion and speed, to discriminate asymptomatic subjects from those with low back pain. However, people simulating low back pain cannot be distinguished from those with real low back pain using this method

    The adsorption and decomposition of N_2O on Ru(001)

    Get PDF
    N/

    Summary Abstract: A theoretical study of the effect of lateral interactions on molecular adsorption and desorption

    Get PDF
    The effect of lateral interactions between coadsorbed molecules on adsorbate island growth and the kinetics of adsorption and desorption have been studied within the constraints of a lattice gas model incorporating a combination of deterministic rate equations with a stochastic formulation. The adsorption and desorption of molecular nitrogen on Ru(001) has been investigated in detail. Recent experiments performed at 77 K reveal an unusual functional dependence of the probability of adsorption which displays a maximum at a coverage of approximately 0.2 monolayer [1,2]. EEL spectra indicate chemisorption of molecular nitrogen occurs only at atop sites with the molecular axis oriented perpendicular to the surface plane [2]. Saturation coverage is achieved at approximately 0.5 monolayer [1,2]. Thermal desorption spectra suggest the presence of two distinct chemisorption states at coverages greater than 0.25 monolayer. Quantitative agreement between calculated and experimental thermal desorption spectra as well as the coverage-dependent probability of adsorption is obtained

    Onset of dielectric modes at 110K and 60K due to local lattice distortions in non-superconducting YBa_{2}Cu_{3}O_{6.0} crystals

    Full text link
    We report the observation of two dielectric transitions at 110K and 60K in the microwave response of non-superconducting YBa_{2}Cu_{3}O_{6.0} crystals. The transitions are characterized by a change in polarizability and presence of loss peaks, associated with overdamped dielectric modes. An explanation is presented in terms of changes in polarizability of the apical O atoms in the Ba-O layer, affected by lattice softening at 110K, due to change in buckling of the Cu-O layer. The onset of another mode at 60K strongly suggests an additional local lattice change at this temperature. Thus microwave dielectric measurements are sensitive indicators of lattice softening which may be relevant to superconductivity.Comment: 5 pages, 3 ps format figure

    Coupling between electronic and structural degrees of freedom in the triangular lattice conductor NaxCoO2

    Full text link
    The determination by powder neutron diffraction of the ambient temperature crystal structures of compounds in the NaxCoO2 family, for 0.3 < x <= 1.0, is reported. The structures consist of triangular CoO2 layers with Na ions distributed in intervening charge reservoir layers. The shapes of the CoO6 octahedra that make up the CoO2 layers are found to be critically dependent on the electron count and on the distribution of the Na ions in the intervening layers, where two types of Na sites are available. Correlation of the shapes of cobalt-oxygen octahedra, the Na ion positions, and the electronic phase diagram in NaxCoO2 is made, showing how structural and electronic degrees of freedom can be coupled in electrically conducting triangular lattice systems.Comment: 15 pages, 1 tables, 6 figures Submitted to Physical Review

    From Black Strings to Black Holes

    Get PDF
    Using recently developed numerical methods, we examine neutral compactified non-uniform black strings which connect to the Gregory-Laflamme critical point. By studying the geometry of the horizon we give evidence that this branch of solutions may connect to the black hole solutions, as conjectured by Kol. We find the geometry of the topology changing solution is likely to be nakedly singular at the point where the horizon radius is zero. We show that these solutions can all be expressed in the coordinate system discussed by Harmark and Obers.Comment: 6 pages, 5 figures, RevTe

    Adaptation and enslavement in endosymbiont-host associations

    Full text link
    The evolutionary persistence of symbiotic associations is a puzzle. Adaptation should eliminate cooperative traits if it is possible to enjoy the advantages of cooperation without reciprocating - a facet of cooperation known in game theory as the Prisoner's Dilemma. Despite this barrier, symbioses are widespread, and may have been necessary for the evolution of complex life. The discovery of strategies such as tit-for-tat has been presented as a general solution to the problem of cooperation. However, this only holds for within-species cooperation, where a single strategy will come to dominate the population. In a symbiotic association each species may have a different strategy, and the theoretical analysis of the single species problem is no guide to the outcome. We present basic analysis of two-species cooperation and show that a species with a fast adaptation rate is enslaved by a slowly evolving one. Paradoxically, the rapidly evolving species becomes highly cooperative, whereas the slowly evolving one gives little in return. This helps understand the occurrence of endosymbioses where the host benefits, but the symbionts appear to gain little from the association.Comment: v2: Correction made to equations 5 & 6 v3: Revised version accepted in Phys. Rev. E; New figure adde

    Phonons from neutron powder diffraction

    Full text link
    The spherically averaged structure function \soq obtained from pulsed neutron powder diffraction contains both elastic and inelastic scattering via an integral over energy. The Fourier transformation of \soq to real space, as is done in the pair density function (PDF) analysis, regularizes the data, i.e. it accentuates the diffuse scattering. We present a technique which enables the extraction of off-center phonon information from powder diffraction experiments by comparing the experimental PDF with theoretical calculations based on standard interatomic potentials and the crystal symmetry. This procedure (dynamics from powder diffraction(DPD)) has been successfully implemented for two systems, a simple metal, fcc Ni, and an ionic crystal, CaF2_{2}. Although computationally intensive, this data analysis allows for a phonon based modeling of the PDF, and additionally provides off-center phonon information from powder neutron diffraction

    Correlated local distortions of the TlO layers in Tl2_2Ba2_2CuOy_{y}: An x-ray absorption study

    Full text link
    We have used the XAFS (x-ray-absorption fine structure) technique to investigate the local structure about the Cu, Ba, and Tl atoms in orthorhombic Tl-2201 with a superconducting transition temperature Tc_c=60 K. Our results clearly show that the O(1), O(2), Cu, and Ba atoms are at their ideal sites as given by the diffraction measurements, while the Tl and O(3) atoms are more disordered than suggested by the average crystal structure. The Tl-Tl distance at 3.5 \AA{ } between the TlO layers does not change, but the Tl-Tl distance at 3.9 \AA{ } within the TlO layer is not observed and the Tl-Ba and Ba-Tl peaks are very broad. The shorter Tl-O(3) distance in the TlO layer is about 2.33 \AA, significantly shorter than the distance calculated with both the Tl and O(3) atoms at their ideal 4e4e sites ( x=y=x=y=0 or 12\frac{1}{2}). A model based on these results shows that the Tl atom is displaced along the directions from its ideal site by about 0.11 \AA; the displacements of neighboring Tl atoms are correlated. The O(3) atom is shifted from the $4e$ site by about 0.53 \AA{ } roughly along the directions. A comparison of the Tl LIII_{III}-edge XAFS spectra from three samples, with Tc_c=60 K, 76 K, and 89 K, shows that the O environment around the Tl atom is sensitive to Tc_c while the Tl local displacement is insensitive to Tc_c and the structural symmetry. These conclusions are compared with other experimental results and the implications for charge transfer and superconductivity are discussed. This paper has been submitted to Phys. Rev. B.Comment: 20 pages plus 14 ps figures, REVTEX 3.
    • …
    corecore