50 research outputs found
Genomic analysis of the causative agents of coccidiosis in domestic chickens
Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding
Revealing Glycoproteins in the Secretome of MCF-7 Human Breast Cancer Cells
Breast cancer is one of the major issues in the field of oncology, reported with a higher prevalence rate in women worldwide. In attempt to reveal the potential biomarkers for breast cancer, the findings of differentially glycosylated haptoglobin and osteonectin in previous study have drawn our attention towards glycoproteins of secretome from the MCF-7 cancer cell line. In the present study, further analyses were performed on the medium of MCF-7 cells by subjecting it to two-dimensional analyses followed by image analysis in contrast to the medium of human mammary epithelial cells (HMEpC) as a negative control. Carboxypeptidase A4 (CPA4), alpha-1-antitrypsin (AAT), haptoglobin (HP), and HSC70 were detected in the medium of MCF-7, while only CPA4 and osteonectin (ON) were detected in HMEpC medium. In addition, CPA4 was detected as upregulated in the MCF-7 medium. Further analysis by lectin showed that CPA4, AAT, HP, and HSC70 were secreted as N-glycan in the medium of MCF-7, with HP also showing differentially N-glycosylated isoforms. For the HMEpC, only CPA4 was detected as N-glycan. No O-glycan was detected in the medium of HMEpC but MCF-7 expressed O-glycosylated CPA4 and HSC70. All these revealed that glycoproteins could be used as glycan-based biomarkers for the prognosis of breast cancer
Thermal Behavior and Energy Efficiency of Modified Concretes in the Tropical Climate: A Systemic Review
Concrete remains the most utilised construction material for building envelopes, which regulate the indoor temperature to achieve human thermal comfort. Often, the energy consumption for building performance appraisal is related to the thermal behaviour of building materials as heating, ventilation, and air conditioning systems all variously contribute to human comfort. Following the development of concrete technology, many types of concrete have been invented to serve several purposes in the construction industry. To clearly understand the concrete type tailored for the specifics of a construction project, the local climate, concrete mechanical properties, and concrete thermal behaviours should be primarily identified to achieve energy efficiency, which also suits the sustainability of global materials. This paper, therefore, reviews the modified concrete thermal behaviours in the tropical climate for more systematic city planning in order to achieve better energy efficiency. Urban heat islands in the tropics and contributing factors, as well as heat transfer mechanisms, are first highlighted. The requirements of concrete thermal behaviour for building envelopes are then discussed through specific heat capacity, thermal conductivity, thermal diffusivity, time lag, and decrement factor in the context of applications and energy consumption in the tropical regions. With a case study, it is found that concrete thermal behaviours directly affect the energy consumption attributed mainly to the use of cooling systems in the tropics. The study can be a reference to mitigating the urban heat island phenomenon in the planning of urban development
Bizonplast, a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella erythropus (Selaginellaceae)
Study of the unique leaf anatomy and chloroplast structure in shade-adapted plants will aid our understanding of how plants use light efficiently in low light environments. Unusual chloroplasts in terms of size and thylakoid membrane stacking have been described previously in several deep-shade plants. In this study, a single giant cup-shaped chloroplast, termed a bizonoplast, was found in the abaxial epidermal cells of the dorsal microphylls and the adaxial epidermal cells of the ventral microphylls in the deep-shade spike moss Selaginella erythropus. Bizonoplasts are dimorphic in ultrastructure: the upper zone is occupied by numerous layers of 2–4 stacked thylakoid membranes while the lower zone contains both unstacked stromal thylakoids and thylakoid lamellae stacked in normal grana structure oriented in different directions. In contrast, other cell types in the microphylls contain chloroplasts with typical structure. This unique chloroplast has not been reported from any other species. The enlargement of epidermal cells into funnel-shaped, photosynthetic cells coupled with specific localization of a large bizonoplast in the lower part of the cells and differential modification in ultrastructure within the chloroplast may allow the plant to better adapt to low light. Further experiments are required to determine whether this shade-adapted organism derives any evolutionary or ecophysiological fitness from these unique chloroplasts
Bizonoplast a unique chloroplast in the epidermal cells of microphylls in the shade plant Selaginella Erythropus (Selaginellaceae)
Copyright © 2007 Botanical Society of America, Inc.Chiou-Rong Sheue, Vassilios Sarafis, Ruth Kiew, Ho-Yih Liu, Alexandre Salino, Ling-Long Kuo-Huang, Yuen-Po Yang, Chi-Chu Tsai, Chun-Hung Lin, Jean W. H. Yong and Maurice S. B. K