458 research outputs found
Pseudogap induced by short-range spin correlations in a doped Mott insulator
We study the evolution of a Mott-Hubbard insulator into a correlated metal
upon doping in the two-dimensional Hubbard model using the Cellular Dynamical
Mean Field Theory. Short-range spin correlations create two additional bands
apart from the familiar Hubbard bands in the spectral function. Even a tiny
doping into this insulator causes a jump of the Fermi energy to one of these
additional bands and an immediate momentum dependent suppression of the
spectral weight at this Fermi energy. The pseudogap is closely tied to the
existence of these bands. This suggests a strong-coupling mechanism that arises
from short-range spin correlations and large scattering rates for the pseudogap
phenomenon seen in several cuprates.Comment: 6 pages, 6 figure
Is the Mott transition relevant to f-electron metals ?
We study how a finite hybridization between a narrow correlated band and a
wide conduction band affects the Mott transition. At zero temperature, the
hybridization is found to be a relevant perturbation, so that the Mott
transition is suppressed by Kondo screening. In contrast, a first-order
transition remains at finite temperature, separating a local moment phase and a
Kondo- screened phase. The first-order transition line terminates in two
critical endpoints. Implications for experiments on f-electron materials such
as the Cerium alloy CeLaTh are discussed.Comment: 5 pages, 3 figure
Only Fermi-Liquids are Metals
Any singular deviation from Landau Fermi-liquid theory appears to lead, for
arbitrarily small concentration of impurities coupling to a non-conserved
quantity, to a vanishing density of states at the chemical potential and
infinite resistivity as temperature approaches zero. Applications to
copper-oxide metals including the temperature dependence of the anisotropy in
resistivity, and to other cases of non Fermi-liquids are discussed.Comment: 11 pages,revtex, 1 Postscript figur
Temperature-dependent Fermi surface evolution in heavy fermion CeIrIn5
In Cerium-based heavy electron materials, the 4f electron's magnetic moments
bind to the itinerant quasiparticles to form composite heavy quasiparticles at
low temperature. The volume of the Fermi surfacein the Brillouin zone
incorporates the moments to produce a "large FS" due to the Luttinger theorem.
When the 4f electrons are localized free moments, a "small FS" is induced since
it contains only broad bands of conduction spd electrons. We have addressed
theoretically the evolution of the heavy fermion FS as a function of
temperature, using a first principles dynamical mean-field theory (DMFT)
approach combined with density functional theory (DFT+DMFT). We focus on the
archetypical heavy electrons in CeIrIn5, which is believed to be near a quantum
critical point. Upon cooling, both the quantum oscillation frequencies and
cyclotron masses show logarithmic scaling behavior (~ ln(T_0/T)) with different
characteristic temperatures T_0 = 130 and 50 K, respectively. The resistivity
coherence peak observed at T ~ 50 K is the result of the competition between
the binding of incoherent 4f electrons to the spd conduction electrons at Fermi
level and the formation of coherent 4f electrons.Comment: 5 pages main article,3 figures for the main article, 2 page
Supplementary information, 2 figures for the Supplementary information.
Supplementary movie 1 and 2 are provided on the
webpage(http://www-ph.postech.ac.kr/~win/supple.html
Resonating Valence Bond Theory of Superconductivity for Dopant Carriers: Application to the Cobaltates
Within the -- model Hamiltonian we present a RVB mean field theory
directly in terms of dopant particles. We apply this theory to
and show that the
resulting phase diagram versus doping is in qualitative agreement with
the experimental results
Strength of Correlations in electron and hole doped cuprates
High temperature superconductivity was achieved by introducing holes in a
parent compound consisting of copper oxide layers separated by spacer layers.
It is possible to dope some of the parent compounds with electrons, and their
physical properties are bearing some similarities but also significant
differences from the hole doped counterparts. Here, we use a recently developed
first principles method, to study the electron doped cuprates and elucidate the
deep physical reasons why their behavior is so different than the hole doped
materials. We find that electron doped compounds are Slater insulators, e.g. a
material where the insulating behavior is the result of the presence of
magnetic long range order. This is in sharp contrast with the hole doped
materials, where the parent compound is a Mott charge transfer insulator,
namely a material which is insulating due to the strong electronic correlations
but not due to the magnetic order.Comment: submitted to Nature Physic
Quantum Monte Carlo Study of Strongly Correlated Electrons: Cellular Dynamical Mean-Field Theory
We study the Hubbard model using the Cellular Dynamical Mean-Field Theory
(CDMFT) with quantum Monte Carlo (QMC) simulations. We present the algorithmic
details of CDMFT with the Hirsch-Fye QMC method for the solution of the
self-consistently embedded quantum cluster problem. We use the one- and
two-dimensional half-filled Hubbard model to gauge the performance of CDMFT+QMC
particularly for small clusters by comparing with the exact results and also
with other quantum cluster methods. We calculate single-particle Green's
functions and self-energies on small clusters to study their size dependence in
one- and two-dimensions.Comment: 14 pages, 18 figure
Collective Modes in the Loop Current Ordered Phase of Cuprates
Recently two branches of weakly dispersive collective modes have been
discovered in under-doped cuprates by inelastic neutron scattering.
Polarization analysis reveals that the modes are magnetic excitations. They are
only visible for temperatures below the transition temperature to a broken
symmetry phase which was discovered earlier and their intensity increases as
temperature is further decreased. The broken symmetry phase itself has
symmetries consistent with ordering of orbital current loops within a unit-cell
without breaking translational symmetry. In order to calculate the collective
modes of such a state we add quantum terms to the Ashkin-Teller (AT) model with
which the classical loop current order has been described. We derive that the
mean field ground state of the quantum model is a product over all unit-cells
of linear combination of the four possible classical configurations of the loop
current order in each unit-cell. The collective modes are calculated by using a
generalized Holstein-Primakoff boson representation of orbital moment operators
and lead to three branches of gapped weakly dispersive collective modes. The
experimental results are consistent with the two lower energy branches; the
third mode is at a higher energy than looked for by present neutron scattering
experiments and might also be over-damped. Implications of the discovery of the
collective modes are discussed.Comment: 16 pages, 6 figure
Short-range spin correlations and induced local spin-singlet amplitude in the Hubbard model
In this paper, from the microscopic Hubbard Hamiltonian we extract the local
spin-singlet amplitude due to short-range spin correlations, and quantify its
strength near half-filling. As a first application of the present approach, we
study a problem of the energy dispersion and its d-wave modulation in the
insulating cuprates, SrCuOCl and CaCuOCl.
Without any adjustable parameters, most puzzling issues are naturally and
quantitatively explained within the present approach.Comment: 6 pages, 3 figure
- …