73 research outputs found

    The G67E mutation in hMLH1 is associated with an unusual presentation of Lynch syndrome

    Get PDF
    Germline mutations in the mismatch repair (MMR) genes are associated with Lynch syndrome, also known as hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Here, we characterise a variant of hMLH1 that confers a loss-of-function MMR phenotype. The mutation changes the highly conserved Gly67 residue to a glutamate (G67E) and is reminiscent of the hMLH1-p.Gly67Arg mutation, which is present in several Lynch syndrome cohorts. hMLH1-Gly67Arg has previously been shown to confer loss-of-function (Shimodaira et al, 1998), and two functional assays suggest that the hMLH1-Gly67Glu protein fails to sustain normal MMR functions. In the first assay, hMLH1-Gly67Glu abolishes the protein's ability to interfere with MMR in yeast. In the second assay, mutation of the analogous residue in yMLH1 (yMLH1-Gly64Glu) causes a loss-of-function mutator phenotype similar to yMLH1-Gly64Arg. Despite these molecular similarities, an unusual spectrum of tumours is associated with hMLH1-Gly67Glu, which is not typical of those associated with Lynch syndrome and differs from those found in families carrying the hMLH1-Gly67Arg allele. This suggests that hMLH1 may have different functions in certain tissues and/or that additional factors may modify the influence of hMLH1 mutations in causing Lynch syndrome

    International Symposium on Chemical Effects Caused by Nuclear Reactions and Radioactive Transformations

    No full text

    Chemical uses of nuclear reactors and particle accelerators in the USA

    No full text

    Post-Assay Chemical Enhancement for Highly Sensitive Lateral Flow Immunoassays: A Critical Review

    No full text
    Lateral flow immunoassay (LFIA) has found a broad application for testing in point-of-care (POC) settings. LFIA is performed using test strips—fully integrated multimembrane assemblies containing all reagents for assay performance. Migration of liquid sample along the test strip initiates the formation of labeled immunocomplexes, which are detected visually or instrumentally. The tradeoff of LFIA’s rapidity and user-friendliness is its relatively low sensitivity (high limit of detection), which restricts its applicability for detecting low-abundant targets. An increase in LFIA’s sensitivity has attracted many efforts and is often considered one of the primary directions in developing immunochemical POC assays. Post-assay enhancements based on chemical reactions facilitate high sensitivity. In this critical review, we explain the performance of post-assay chemical enhancements, discuss their advantages, limitations, compared limit of detection (LOD) improvements, and required time for the enhancement procedures. We raise concerns about the performance of enhanced LFIA and discuss the bottlenecks in the existing experiments. Finally, we suggest the experimental workflow for step-by-step development and validation of enhanced LFIA. This review summarizes the state-of-art of LFIA with chemical enhancement, offers ways to overcome existing limitations, and discusses future outlooks for highly sensitive testing in POC conditions
    • …
    corecore