23 research outputs found

    Finite type modules and Bethe Ansatz for quantum toroidal gl(1)

    Get PDF
    We study highest weight representations of the Borel subalgebra of the quantum toroidal gl(1) algebra with finite-dimensional weight spaces. In particular, we develop the q-character theory for such modules. We introduce and study the subcategory of `finite type' modules. By definition, a module over the Borel subalgebra is finite type if the Cartan like current \psi^+(z) has a finite number of eigenvalues, even though the module itself can be infinite dimensional. We use our results to diagonalize the transfer matrix T_{V,W}(u;p) analogous to those of the six vertex model. In our setting T_{V,W}(u;p) acts in a tensor product W of Fock spaces and V is a highest weight module over the Borel subalgebra of quantum toroidal gl(1) with finite-dimensional weight spaces. Namely we show that for a special choice of finite type modules VV the corresponding transfer matrices, Q(u;p) and T(u;p), are polynomials in u and satisfy a two-term TQ relation. We use this relation to prove the Bethe Ansatz equation for the zeroes of the eigenvalues of Q(u;p). Then we show that the eigenvalues of T_{V,W}(u;p) are given by an appropriate substitution of eigenvalues of Q(u;p) into the q-character of V.Comment: Latex 42 page

    Quantum toroidal gl1\mathfrak{gl}_1 algebra : plane partitions

    Full text link
    In third paper of the series we construct a large family of representations of the quantum toroidal \gl_1 algebra whose bases are parameterized by plane partitions with various boundary conditions and restrictions. We study the corresponding formal characters. As an application we obtain a Gelfand-Zetlin type basis for a class of irreducible lowest weight \gl_\infty-modules.Comment: Latex, 38 page
    corecore