23 research outputs found
Finite type modules and Bethe Ansatz for quantum toroidal gl(1)
We study highest weight representations of the Borel subalgebra of the
quantum toroidal gl(1) algebra with finite-dimensional weight spaces. In
particular, we develop the q-character theory for such modules. We introduce
and study the subcategory of `finite type' modules. By definition, a module
over the Borel subalgebra is finite type if the Cartan like current \psi^+(z)
has a finite number of eigenvalues, even though the module itself can be
infinite dimensional.
We use our results to diagonalize the transfer matrix T_{V,W}(u;p) analogous
to those of the six vertex model. In our setting T_{V,W}(u;p) acts in a tensor
product W of Fock spaces and V is a highest weight module over the Borel
subalgebra of quantum toroidal gl(1) with finite-dimensional weight spaces.
Namely we show that for a special choice of finite type modules the
corresponding transfer matrices, Q(u;p) and T(u;p), are polynomials in u and
satisfy a two-term TQ relation. We use this relation to prove the Bethe Ansatz
equation for the zeroes of the eigenvalues of Q(u;p). Then we show that the
eigenvalues of T_{V,W}(u;p) are given by an appropriate substitution of
eigenvalues of Q(u;p) into the q-character of V.Comment: Latex 42 page
Quantum toroidal algebra : plane partitions
In third paper of the series we construct a large family of representations
of the quantum toroidal \gl_1 algebra whose bases are parameterized by plane
partitions with various boundary conditions and restrictions. We study the
corresponding formal characters. As an application we obtain a Gelfand-Zetlin
type basis for a class of irreducible lowest weight \gl_\infty-modules.Comment: Latex, 38 page