15 research outputs found

    Forced Moves or Good Tricks in Design Space? Landmarks in the Evolution of Neural Mechanisms for Action Selection

    Get PDF
    This review considers some important landmarks in animal evolution, asking to what extent specialized action-selection mechanisms play a role in the functional architecture of different nervous system plans, and looking for “forced moves” or “good tricks” (see Dennett, D., 1995, Darwin’s Dangerous Idea, Penguin Books, London) that could possibly transfer to the design of robot control systems. A key conclusion is that while cnidarians (e.g. jellyfish) appear to have discovered some good tricks for the design of behavior-based control systems—largely lacking specialized selection mechanisms—the emergence of bilaterians may have forced the evolution of a central ganglion, or “archaic brain”, whose main function is to resolve conflicts between peripheral systems. Whilst vertebrates have many interesting selection substrates it is likely that here too the evolution of centralized structures such as the medial reticular formation and the basal ganglia may have been a forced move because of the need to limit connection costs as brains increased in size

    Monitoring and Scoring Counter-Diffusion Protein Crystallization Experiments in Capillaries by in situ Dynamic Light Scattering

    Get PDF
    In this paper, we demonstrate the feasibility of using in situ Dynamic Light Scattering (DLS) to monitor counter-diffusion crystallization experiments in capillaries. Firstly, we have validated the quality of the DLS signal in thin capillaries, which is comparable to that obtained in standard quartz cuvettes. Then, we have carried out DLS measurements of a counter-diffusion crystallization experiment of glucose isomerase in capillaries of different diameters (0.1, 0.2 and 0.3 mm) in order to follow the temporal evolution of protein supersaturation. Finally, we have compared DLS data with optical recordings of the progression of the crystallization front and with a simulation model of counter-diffusion in 1D

    Non-aqueous electrolyte solutions in chemistry and modern technology

    Get PDF
    In this paper a brief survey is given of the properties of non-aqueous electrolyte solutions and their applications in chemistry and technology without going into the details of theory. Specific solvent-solute interactions and the role of the solvent beyond its function as a homogenous isotropic medium are stressed. Taking into account Parker's statement1) ldquoScientists nowadays are under increasing pressure to consider the relevance of their research, and rightly sordquo we have included examples showing the increasing industrial interest in non-aqueous electrolyte solutions. The concepts and results are arranged in two parts. Part A concerns the fundamentals of thermodynamics, transport processes, spectroscopy and chemical kinetics of non-aqueous solutions and some applications in these fields. Part B describes their use in various technologies such as high-energy batteries, non-emissive electro-optic displays, photoelectrochemical cells, electrodeposition, electrolytic capacitors, electro-organic synthesis, metallurgic processes and others. Four Appendices are added. Appendix A gives a survey on the most important non-aqueous solvents, their physical properties and correlation parameters, and the commonly used abbreviations. Appendices B and C show the mathematical background of the general chemical model. The Symbols and abbreviations of the text are listed and explained in Appendix D
    corecore