25,866 research outputs found

    Quantum spin circulator in Y junctions of Heisenberg chains

    Get PDF
    We show that a quantum spin circulator, a nonreciprocal device that routes spin currents without any charge transport, can be achieved in Y junctions of identical spin-1/21/2 Heisenberg chains coupled by a chiral three-spin interaction. Using bosonization, boundary conformal field theory, and density-matrix renormalization group simulations, we find that a chiral fixed point with maximally asymmetric spin conductance arises at a critical point separating a regime of disconnected chains from a spin-only version of the three-channel Kondo effect. We argue that networks of spin-chain Y junctions provide a controllable approach to construct long-sought chiral spin liquid phases.Comment: 9 pages, 3 figure

    Symmetry Aspects in Nonrelativistic Multi-Scalar Field Models and Application to a Coupled Two-Species Dilute Bose Gas

    Get PDF
    We discuss unusual aspects of symmetry that can happen due to entropic effects in the context of multi-scalar field theories at finite temperature. We present their consequences, in special, for the case of nonrelativistic models of hard core spheres. We show that for nonrelativistic models phenomena like inverse symmetry breaking and symmetry non-restoration cannot take place, but a reentrant phase at high temperatures is shown to be possible for some region of parameters. We then develop a model of interest in studies of Bose-Einstein condensation in dilute atomic gases and discuss about its phase transition patterns. In this application to a Bose-Einstein condensation model, however, no reentrant phases are found.Comment: 8 pages, 1 eps figure, IOP style. Based on a talk given by R. O. Ramos at the QFEXT05 workshop, Barcelona, Spain, September 5-9, 2005. One reference was update

    Boundary versus bulk behavior of time-dependent correlation functions in one-dimensional quantum systems

    Get PDF
    We study the influence of reflective boundaries on time-dependent responses of one-dimensional quantum fluids at zero temperature beyond the low-energy approximation. Our analysis is based on an extension of effective mobile impurity models for nonlinear Luttinger liquids to the case of open boundary conditions. For integrable models, we show that boundary autocorrelations oscillate as a function of time with the same frequency as the corresponding bulk autocorrelations. This frequency can be identified as the band edge of elementary excitations. The amplitude of the oscillations decays as a power law with distinct exponents at the boundary and in the bulk, but boundary and bulk exponents are determined by the same coupling constant in the mobile impurity model. For nonintegrable models, we argue that the power-law decay of the oscillations is generic for autocorrelations in the bulk, but turns into an exponential decay at the boundary. Moreover, there is in general a nonuniversal shift of the boundary frequency in comparison with the band edge of bulk excitations. The predictions of our effective field theory are compared with numerical results obtained by time-dependent density matrix renormalization group (tDMRG) for both integrable and nonintegrable critical spin-SS chains with S=1/2S=1/2, 11 and 3/23/2.Comment: 20 pages, 12 figure

    Hamming distance and mobility behavior in generalized rock-paper-scissors models

    Full text link
    This work reports on two related investigations of stochastic simulations which are widely used to study biodiversity and other related issues. We first deal with the behavior of the Hamming distance under the increase of the number of species and the size of the lattice, and then investigate how the mobility of the species contributes to jeopardize biodiversity. The investigations are based on the standard rules of reproduction, mobility and predation or competition, which are described by specific rules, guided by generalization of the rock-paper-scissors game, valid in the case of three species. The results on the Hamming distance indicate that it engenders universal behavior, independently of the number of species and the size of the square lattice. The results on the mobility confirm the prediction that it may destroy diversity, if it is increased to higher and higher values.Comment: 7 pages, 9 figures. To appear in EP
    • …
    corecore