1,725 research outputs found
About the connection between vacuum birefringence and the light-light scattering amplitude
Birefringence phenomena stemming from vacuum polarization are revisited in
the framework of coherent scattering. Based on photon-photon scattering, our
analysis brings out the direct connection between this process and vacuum
birefringence. We show how this procedure can be extended to the Kerr and the
Cotton-Mouton birefringences in vacuum, thus providing a unified treatment of
various polarization schemes, including those involving static fields
A measure on the set of compact Friedmann-Lemaitre-Robertson-Walker models
Compact, flat Friedmann-Lemaitre-Robertson-Walker (FLRW) models have recently
regained interest as a good fit to the observed cosmic microwave background
temperature fluctuations. However, it is generally thought that a globally,
exactly-flat FLRW model is theoretically improbable. Here, in order to obtain a
probability space on the set F of compact, comoving, 3-spatial sections of FLRW
models, a physically motivated hypothesis is proposed, using the density
parameter Omega as a derived rather than fundamental parameter. We assume that
the processes that select the 3-manifold also select a global mass-energy and a
Hubble parameter. The inferred range in Omega consists of a single real value
for any 3-manifold. Thus, the obvious measure over F is the discrete measure.
Hence, if the global mass-energy and Hubble parameter are a function of
3-manifold choice among compact FLRW models, then probability spaces
parametrised by Omega do not, in general, give a zero probability of a flat
model. Alternatively, parametrisation by the injectivity radius r_inj ("size")
suggests the Lebesgue measure. In this case, the probability space over the
injectivity radius implies that flat models occur almost surely (a.s.), in the
sense of probability theory, and non-flat models a.s. do not occur.Comment: 19 pages, 4 figures; v2: minor language improvements; v3:
generalisation: m, H functions of
Radiative Corrections to the Casimir Energy
The lowest radiative correction to the Casimir energy density between two
parallel plates is calculated using effective field theory. Since the
correlators of the electromagnetic field diverge near the plates, the
regularized energy density is also divergent. However, the regularized integral
of the energy density is finite and varies with the plate separation L as
1/L^7. This apparently paradoxical situation is analyzed in an equivalent, but
more transparent theory of a massless scalar field in 1+1 dimensions confined
to a line element of length L and satisfying Dirichlet boundary conditions.Comment: 7 pages, Late
Right-invariant Sobolev metrics of fractional order on the diffeomorphism group of the circle
In this paper, we study the geodesic flow of a right-invariant metric induced
by a general Fourier multiplier on the diffeomorphism group of the circle and
on some of its homogeneous spaces. This study covers in particular
right-invariant metrics induced by Sobolev norms of fractional order. We show
that, under a certain condition on the symbol of the inertia operator (which is
satisfied for the fractional Sobolev norm for ), the
corresponding initial value problem is well-posed in the smooth category and
that the Riemannian exponential map is a smooth local diffeomorphism.
Paradigmatic examples of our general setting cover, besides all traditional
Euler equations induced by a local inertia operator, the Constantin-Lax-Majda
equation, and the Euler-Weil-Petersson equation.Comment: 40 pages. Corrected typos and improved redactio
The geometry of a vorticity model equation
We provide rigorous evidence of the fact that the modified
Constantin-Lax-Majda equation modeling vortex and quasi-geostrophic dynamics
describes the geodesic flow on the subgroup of orientation-preserving
diffeomorphisms fixing one point, with respect to right-invariant metric
induced by the homogeneous Sobolev norm and show the local existence
of the geodesics in the extended group of diffeomorphisms of Sobolev class
with .Comment: 24 page
A Tonnetz Model for pentachords
This article deals with the construction of surfaces that are suitable for
representing pentachords or 5-pitch segments that are in the same class.
It is a generalization of the well known \"Ottingen-Riemann torus for triads of
neo-Riemannian theories. Two pentachords are near if they differ by a
particular set of contextual inversions and the whole contextual group of
inversions produces a Tiling (Tessellation) by pentagons on the surfaces. A
description of the surfaces as coverings of a particular Tiling is given in the
twelve-tone enharmonic scale case.Comment: 27 pages, 12 figure
Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas
Low energy non linear QED effects in vacuum have been predicted since 1936
and have been subject of research for many decades. Two main schemes have been
proposed for such a 'first' detection: measurements of ellipticity acquired by
a linearly polarized beam of light passing through a magnetic field and direct
light-light scattering. The study of the propagation of light through an
external field can also be used to probe for new physics such as the existence
of axion-like particles and millicharged particles. Their existence in nature
would cause the index of refraction of vacuum to be different from unity in the
presence of an external field and dependent of the polarization direction of
the light propagating. The major achievement of reaching the project
sensitivities in gravitational wave interferometers such as LIGO an VIRGO has
opened the possibility of using such instruments for the detection of QED
corrections in electrodynamics and for probing new physics at very low
energies. In this paper we discuss the difference between direct birefringence
measurements and index of refraction measurements. We propose an almost
parasitic implementation of an external magnetic field along the arms of the
VIRGO interferometer and discuss the advantage of this choice in comparison to
a previously proposed configuration based on shorter prototype interferometers
which we believe is inadequate. Considering the design sensitivity in the
strain, for the near future VIRGO+ interferometer, of in the range 40 Hz Hz leads to a variable
dipole magnet configuration at a frequency above 20 Hz such that Tm/ for a `first' vacuum non linear QED detection
Quantum instability for charged scalar particles on charged Nariai and ultracold black hole manifolds
We analyze in detail the quantum instability which characterizes charged
scalar field on three special de Sitter charged black hole backgrounds. In
particular, we compute exactly the imaginary part of the effective action for
scalar charged fields on the ultracold I, ultracold II and Nariai charged black
hole backgrounds. Both the transmission coefficient approach and the
-function approach are exploited. Thermal effects on this quantum
instability are also taken into account in presence of a non-zero black hole
temperature (ultracold I and Nariai).Comment: 20 pages, IOP styl
Performance of the ARIANNA Hexagonal Radio Array
Installation of the ARIANNA Hexagonal Radio Array (HRA) on the Ross Ice Shelf
of Antarctica has been completed. This detector serves as a pilot program to
the ARIANNA neutrino telescope, which aims to measure the diffuse flux of very
high energy neutrinos by observing the radio pulse generated by
neutrino-induced charged particle showers in the ice. All HRA stations ran
reliably and took data during the entire 2014-2015 austral summer season. A new
radio signal direction reconstruction procedure is described, and is observed
to have a resolution better than a degree. The reconstruction is used in a
preliminary search for potential neutrino candidate events in the data from one
of the newly installed detector stations. Three cuts are used to separate radio
backgrounds from neutrino signals. The cuts are found to filter out all data
recorded by the station during the season while preserving 85.4% of simulated
neutrino events that trigger the station. This efficiency is similar to that
found in analyses of previous HRA data taking seasons.Comment: Proceedings from the 34th ICRC2015, http://icrc2015.nl/ . 8 pages, 6
figure
A First Search for Cosmogenic Neutrinos with the ARIANNA Hexagonal Radio Array
The ARIANNA experiment seeks to observe the diffuse flux of neutrinos in the
10^8 - 10^10 GeV energy range using a grid of radio detectors at the surface of
the Ross Ice Shelf of Antarctica. The detector measures the coherent Cherenkov
radiation produced at radio frequencies, from about 100 MHz to 1 GHz, by
charged particle showers generated by neutrino interactions in the ice. The
ARIANNA Hexagonal Radio Array (HRA) is being constructed as a prototype for the
full array. During the 2013-14 austral summer, three HRA stations collected
radio data which was wirelessly transmitted off site in nearly real-time. The
performance of these stations is described and a simple analysis to search for
neutrino signals is presented. The analysis employs a set of three cuts that
reject background triggers while preserving 90% of simulated cosmogenic
neutrino triggers. No neutrino candidates are found in the data and a
model-independent 90% confidence level Neyman upper limit is placed on the all
flavor neutrino+antineutrino flux in a sliding decade-wide energy bin. The
limit reaches a minimum of 1.9x10^-23 GeV^-1 cm^-2 s^-1 sr^-1 in the 10^8.5 -
10^9.5 GeV energy bin. Simulations of the performance of the full detector are
also described. The sensitivity of the full ARIANNA experiment is presented and
compared with current neutrino flux models.Comment: 22 pages, 22 figures. Published in Astroparticle Physic
- …