421 research outputs found
Limitations to Carrier Mobility and Phase-Coherent Transport in Bilayer Graphene
We present transport measurements on high-mobility bilayer graphene fully
encapsulated in hexagonal boron nitride. We show two terminal quantum Hall
effect measurements which exhibit full symmetry broken Landau levels at low
magnetic fields. From weak localization measurements, we extract gate-tunable
phase coherence times as well as the inter- and intra-valley
scattering times and . While is in qualitative
agreement with an electron-electron interaction mediated dephasing mechanism,
electron spin-flip scattering processes are limiting at low
temperatures. The analysis of and points to local strain
fluctuation as the most probable mechanism for limiting the mobility in
high-quality bilayer graphene
Etched graphene quantum dots on hexagonal boron nitride
We report on the fabrication and characterization of etched graphene quantum
dots (QDs) on hexagonal boron nitride (hBN) and SiO2 with different island
diameters. We perform a statistical analysis of Coulomb peak spacings over a
wide energy range. For graphene QDs on hBN, the standard deviation of the
normalized peak spacing distribution decreases with increasing QD diameter,
whereas for QDs on SiO2 no diameter dependency is observed. In addition, QDs on
hBN are more stable under the influence of perpendicular magnetic fields up to
9T. Both results indicate a substantially reduced substrate induced disorder
potential in graphene QDs on hBN
Observation of the spin-orbit gap in bilayer graphene by one-dimensional ballistic transport
We report on measurements of quantized conductance in gate-defined quantum
point contacts in bilayer graphene that allow the observation of subband
splittings due to spin-orbit coupling. The size of this splitting can be tuned
from 40 to 80 eV by the displacement field. We assign this gate-tunable
subband-splitting to a gap induced by spin-orbit coupling of Kane-Mele type,
enhanced by proximity effects due to the substrate. We show that this
spin-orbit coupling gives rise to a complex pattern in low perpendicular
magnetic fields, increasing the Zeeman splitting in one valley and suppressing
it in the other one. In addition, we observe the existence of a spin-polarized
channel of 6 e/h at high in-plane magnetic field and of signatures of
interaction effects at the crossings of spin-split subbands of opposite spins
at finite magnetic field.Comment: 5 pages, 4 figures, Supplement 6 figure
Community-based control of a neglected tropical disease: the mossy foot treatment and prevention association
Podoconiosis (endemic non-filarial elephantiasis, also known as mossy foot) is a non-communicable disease now found exclusively in the tropics, caused by the conjunction of environmental, genetic, and economic factors. Silicate particles formed by the disintegration of lava in areas of high altitude (over 1,000 m) and seasonal rainfall (over 1,000 mm per annum) penetrate the skin of barefoot subsistence farmers, and in susceptible individuals cause lymphatic blockage and subsequent elephantiasis [1]. Although an estimated one million Ethiopians (of a total population of 77 million) are afflicted with podoconiosis [2], which creates a huge economic burden in endemic areas [3], no national policy has yet been developed to control or prevent the condition, and most affected communities remain unaware of treatment options
PhenTAA: A Redox-Active N<sub>4</sub>-Macrocyclic Ligand Featuring Donor and Acceptor Moieties
Here, we present the development and characterization of the novel PhenTAA macrocycle as well as a series of [Ni(R2PhenTAA)]n complexes featuring two sites for ligand-centered redox-activity. These differ in the substituent R (R = H, Me, or Ph) and overall charge of the complex n (n = −2, −1, 0, +1, or +2). Electrochemical and spectroscopic techniques (CV, UV/vis-SEC, X-band EPR) reveal that all redox events of the [Ni(R2PhenTAA)] complexes are ligand-based, with accessible ligand charges of −2, −1, 0, +1, and +2. The o-phenylenediamide (OPD) group functions as the electron donor, while the imine moieties act as electron acceptors. The flanking o-aminobenzaldimine groups delocalize spin density in both the oxidized and reduced ligand states. The reduced complexes have different stabilities depending on the substituent R. For R = H, dimerization occurs upon reduction, whereas for R = Me/Ph, the reduced imine groups are stabilized. This also gives electrochemical access to a [Ni(R2PhenTAA)]2- species. DFT and TD-DFT calculations corroborate these findings and further illustrate the unique donor-acceptor properties of the respective OPD and imine moieties. The novel [Ni(R2PhenTAA)] complexes exhibit up to five different ligand-based oxidation states and are electrochemically stable in a range from −2.4 to +1.8 V for the Me/Ph complexes (vs Fc/Fc+).</p
Controlling the strength of interaction between carbon dioxide and nitrogen-rich carbon materials by molecular design
Thermal treatment of hexaazatriphenylene-hexacarbonitrile (HAT-CN) in the temperature range from 500 °C to 700 °C leads to precise control over the degree of condensation, and thus atomic construction and porosity of the resulting C2N-type materials. Depending on the condensation temperature of HAT-CN, nitrogen contents of more than 30 at% can be reached. In general, these carbons show adsorption properties which are comparable to those known for zeolites but their pore size can be adjusted over a wider range. At condensation temperatures of 525 °C and below, the uptake of nitrogen gas remains negligible due to size exclusion, but the internal pores are large and polarizing enough that CO2 can still adsorb on part of the internal surface. This leads to surprisingly high CO2 adsorption capacities and isosteric heat of adsorption of up to 52 kJ mol−1. Theoretical calculations show that this high binding enthalpy arises from collective stabilization effects from the nitrogen atoms in the C2N layers surrounding the carbon atom in the CO2 molecule and from the electron acceptor properties of the carbon atoms from C2N which are in close proximity to the oxygen atoms in CO2. A true CO2 molecular sieving effect is achieved for the first time in such a metal-free organic material with zeolite-like properties, showing an IAST CO2/N2 selectivity of up to 121 at 298 K and a N2/CO2 ratio of 90/10 without notable changes in the CO2 adsorption properities over 80 cycles
Study protocol to investigate the effect of a lifestyle intervention on body weight, psychological health status and risk factors associated with disease recurrence in women recovering from breast cancer treatment
Background
Breast cancer survivors often encounter physiological and psychological problems related to their diagnosis and treatment that can influence long-term prognosis. The aim of this research is to investigate the effects of a lifestyle intervention on body weight and psychological well-being in women recovering from breast cancer treatment, and to determine the relationship between changes in these variables and biomarkers associated with disease recurrence and survival.
Methods/design
Following ethical approval, a total of 100 patients will be randomly assigned to a lifestyle intervention (incorporating dietary energy restriction in conjunction with aerobic exercise training) or normal care control group. Patients randomised to the dietary and exercise intervention will be given individualised healthy eating dietary advice and written information and attend moderate intensity aerobic exercise sessions on three to five days per week for a period of 24 weeks. The aim of this strategy is to induce a steady weight loss of up to 0.5 Kg each week. In addition, the overall quality of the diet will be examined with a view to (i) reducing the dietary intake of fat to ~25% of the total calories, (ii) eating at least 5 portions of fruit and vegetables a day, (iii) increasing the intake of fibre and reducing refined carbohydrates, and (iv) taking moderate amounts of alcohol. Outcome measures will include body weight and body composition, psychological health status (stress and depression), cardiorespiratory fitness and quality of life. In addition, biomarkers associated with disease recurrence, including stress hormones, estrogen status, inflammatory markers and indices of innate and adaptive immune function will be monitored.
Discussion
This research will provide valuable information on the effectiveness of a practical, easily implemented lifestyle intervention for evoking positive effects on body weight and psychological well-being, two important factors that can influence long-term prognosis in breast cancer survivors. However, the added value of the study is that it will also evaluate the effects of the lifestyle intervention on a range of biomarkers associated with disease recurrence and survival. Considered together, the results should improve our understanding of the potential role that lifestyle-modifiable factors could play in saving or prolonging lives
Analysing NSW state policy for child obesity prevention: strategic policy versus practical action
There is increasing worldwide recognition of the need for government policies to address the recent increases in the incidence and prevalence of childhood obesity. The complexity and inter-relatedness of the determinants of obesity pose a genuine policy challenge, both scientifically and politically. This study examines the characteristics of one of the early policy responses, the NSW Government\u27s Prevention of Obesity in Children and Young People: NSW Government Action Plan 2003-2007 (GAP), as a case study, assessing it in terms of its content and capacity for implementation. This policy was designed as an initial set of practical actions spanning five government sectors. Most of the policy actions fitted with existing implementation systems within NSW government, and reflected an incremental approach to policy formulation and implementation. As a case study, the NSW Government Action Plan illustrates that childhood obesity policy development and implementation are at an early stage. This policy, while limited, may have built sufficient commitment and support to create momentum for more strategic policy in the future. A more sophisticated, comprehensive and strategic policy which can also be widely implemented and evaluated should now be built on this base
Epigenetic regulation by RARα maintains ligand-independent transcriptional activity
Retinoic acid receptors (RARs) α, β and γ are key regulators of embryonic development. Hematopoietic differentiation is regulated by RARα, and several types of leukemia show aberrant RARα activity. Through microarray expression analysis, we identified transcripts differentially expressed between F9 wild-type (Wt) and RARα knockout cells cultured in the absence or presence of the RAR-specific ligand all trans retinoic acid (RA). We validated the decreased Mest, Tex13, Gab1, Bcl11a, Tcfap2a and HMGcs1 transcript levels, and increased Slc38a4, Stmn2, RpL39l, Ref2L, Mobp and Rlf1 transcript levels in the RARa knockout cells. The decreased Mest and Tex13 transcript levels were associated with increased promoter CpG-island methylation and increased repressive histone modifications (H3K9me3) in RARα knockout cells. Increased Slc38a4 and Stmn2 transcript levels were associated with decreased promoter CpG-island methylation and increased permissive histone modifications (H3K9/K14ac, H3K4me3) in RARα knockout cells. We demonstrated specific association of RARα and RXRα with the Mest promoter. Importantly, stable expression of a dominant negative, oncogenic PML–RARα fusion protein in F9 Wt cells recapitulated the decreased Mest transcript levels observed in RARα knockout cells. We propose that RARα plays an important role in cellular memory and imprinting by regulating the CpG methylation status of specific promoter regions
- …