513 research outputs found

    Extended Emission Line Gas in Radio Galaxies - PKS0349-27

    Get PDF
    PKS0349-27 is a classical FRII radio galaxy with an AGN host which has a spectacular, spiral-like structure in its extended emission line gas (EELG). We have measured the velocity field in this gas and find that it splits into 2 cloud groups separated by radial velocities which at some points approach 400 km/s Measurements of the diagnostic emission line ratios [OIII]5007/H-beta, [SII]6716+6731/H-alpha, and [NII]6583/H-alpha in these clouds show no evidence for the type of HII region emission associated with starburst activity in either velocity system. The measured emission line ratios are similar to those found in the nuclei of narrow-line radio galaxies, but the extended ionization/excitation cannot be produced by continuum emission from the active nucleus alone. We present arguments which suggest that the velocity disturbances seen in the EELG are most likely the result of a galaxy-galaxy collision or merger but cannot completely rule out the possibility that the gas has been disrupted by the passage of a radio jet.Comment: 12 pages, 3 fig pages, to appear in the Astrophys.

    Thermoelectric performance of granular semiconductors

    Full text link
    We study thermoelectric properties of granular semiconductors with weak tunneling conductance between the grains, g_t < 1. We calculate the thermopower and figure of merit taking into account the shift of the chemical potential and the asymmetry of the density of states in the vicinity of the Fermi surface due to n- or p-type doping in the Efros-Shklovskii regime for temperatures less than the charging energy. We show that for weakly coupled semiconducting grains the figure of merit is optimized for grain sizes of order 5nm for typical materials and its values can be larger than one. We also study the case of compensated granular semiconductors and show that in this case the thermopower can be still finite, although two to three orders of magnitude smaller than in the uncompensated regime.Comment: 4 pages, 4 figure

    Magnetic Properties of a Bose-Einstein Condensate

    Full text link
    Three hyperfine states of Bose-condensed sodium atoms, recently optically trapped, can be described as a spin-1 Bose gas. We study the behaviour of this system in a magnetic field, and construct the phase diagram, where the temperature of the Bose condensation TBECT_{BEC} increases with magnetic field. In particular the system is ferromagnetic below TBECT_{BEC} and the magnetization is proportional to the condensate fraction in a vanishing magnetic field. Second derivatives of the magnetisation with regard to temperature or magnetic field are discontinuous along the phase boundary.Comment: 5 pages, 5 figures included, to appear in Phys. Rev.

    Mean Field Theory of Josephson Junction Arrays with Charge Frustration

    Full text link
    Using the path integral approach, we provide an explicit derivation of the equation for the phase boundary for quantum Josephson junction arrays with offset charges and non-diagonal capacitance matrix. For the model with nearest neighbor capacitance matrix and uniform offset charge q/2e=1/2q/2e=1/2, we determine, in the low critical temperature expansion, the most relevant contributions to the equation for the phase boundary. We explicitly construct the charge distributions on the lattice corresponding to the lowest energies. We find a reentrant behavior even with a short ranged interaction. A merit of the path integral approach is that it allows to provide an elegant derivation of the Ginzburg-Landau free energy for a general model with charge frustration and non-diagonal capacitance matrix. The partition function factorizes as a product of a topological term, depending only on a set of integers, and a non-topological one, which is explicitly evaluated.Comment: LaTex, 24 pages, 8 figure

    Domain Walls Motion and Resistivity in a Fully-Frustrated Josephson Array

    Full text link
    It is identified numerically that the resistivity of a fully-frustrated Josephson-junction array is due to motion of domain walls in vortex lattice rather than to motion of single vortices

    The Evolution of Early-Type Galaxies in Distant Clusters II: Internal Kinematics of 55 Galaxies in the z=0.33 Cluster CL1358+62

    Full text link
    We define a large sample of galaxies for use in a study of the fundamental plane in the intermediate redshift cluster CL1358+62 at z=0.33z=0.33. We have analyzed high resolution spectra for 55 members of the cluster. The data were acquired with the Low Resolution Imaging Spectrograph on the Keck I 10m telescope. A new algorithm for measuring velocity dispersions is presented and used to measure the internal kinematics of the galaxies. This algorithm has been tested against the Fourier Fitting method so the data presented here can be compared with those measured previously in nearby galaxies. We have measured central velocity dispersions suitable for use in a fundamental plane analysis. The data have high S/NS/N and the resulting random errors on the dispersions are very low, typically <5<5%. Uncertainties due to mismatch of the stellar templates has been minimized through several tests and the total systematic error is of order \about 5%. Good seeing enabled us to measure velocity dispersion profiles and rotation curves for most of the sample and although a large fraction of the galaxies display a high level of rotation, the gradients of the total second moment of the kinematics are all very regular and similar to those in nearby galaxies. We conclude that the data therefore can be reliably corrected for aperture size in a manner consistent with nearby galaxy samples.Comment: 30 pages, 13 figures; for publication in the ApJ (accepted on 23 August 1999

    Edge effects in a frustrated Josephson junction array with modulated couplings

    Full text link
    A square array of Josephson junctions with modulated strength in a magnetic field with half a flux quantum per plaquette is studied by analytic arguments and dynamical simulations. The modulation is such that alternate columns of junctions are of different strength to the rest. Previous work has shown that this system undergoes an XY followed by an Ising-like vortex lattice disordering transition at a lower temperature. We argue that resistance measurements are a possible probe of the vortex lattice disordering transition as the linear resistance RL(T)A(T)/LR_{L}(T)\sim A(T)/L with A(T)(TTcI) A(T) \propto (T-T_{cI}) at intermediate temperatures TcXY>T>TcIT_{cXY}>T>T_{cI} due to dissipation at the array edges for a particular geometry and vanishes for other geometries. Extensive dynamical simulations are performed which support the qualitative physical arguments.Comment: 8 pages with figs, RevTeX, to appear in Phys. Rev.

    Minimum Thermal Conductivity of Superlattices

    Full text link
    The phonon thermal conductivity of a multilayer is calculated for transport perpendicular to the layers. There is a cross over between particle transport for thick layers to wave transport for thin layers. The calculations shows that the conductivity has a minimum value for a layer thickness somewhat smaller then the mean free path of the phonons.Comment: new results added, to appear in PR

    Chandra LETGS and XMM-Newton observations of NGC 4593

    Get PDF
    In this paper, we analyze spectra of the Seyfert 1 galaxy NGC 4593 obtained with the Chandra Low Energy Transmission Grating Spectrometer (LETGS), the Reflection Grating Spectrometer (RGS) and the European Photon Imaging Camera's (EPIC) onboard of XMM-Newton. The two observations were separated by ~7 months. In the LETGS spectrum we detect a highly ionized warm absorber corresponding to an ionization state of 400x10^{-9} W m, visible as a depression at 10-18 \AA. This depression is formed by multiple weak Fe and Ne lines. A much smaller column density was found for the lowly ionized warm absorber, corresponding to xi = 3x10^{-9} W m. However, an intermediate ionization warm absorber is not detected. For the RGS data the ionization state is hard to constrain. The EPIC results show a narrow Fe Kalpha line.Comment: 8 pages, 10 figures, accepted for publication in A&

    Charging Effects and Quantum Crossover in Granular Superconductors

    Full text link
    The effects of the charging energy in the superconducting transition of granular materials or Josephson junction arrays is investigated using a pseudospin one model. Within a mean-field renormalization-group approach, we obtain the phase diagram as a function of temperature and charging energy. In contrast to early treatments, we find no sign of a reentrant transition in agreement with more recent studies. A crossover line is identified in the non-superconducting side of the phase diagram and along which we expect to observe anomalies in the transport and thermodynamic properties. We also study a charge ordering phase, which can appear for large nearest neighbor Coulomb interaction, and show that it leads to first-order transitions at low temperatures. We argue that, in the presence of charge ordering, a non monotonic behavior with decreasing temperature is possible with a maximum in the resistance just before entering the superconducting phase.Comment: 15 pages plus 4 fig. appended, Revtex, INPE/LAS-00
    corecore