268 research outputs found
Search for the Production of Element 112 in the 48Ca + 238U Reaction
We have searched for the production of element 112 in the reaction of 231 MeV
48Ca with 238U. We have not observed any events with a "one event" upper limit
cross section of 1.6 pb for EVR-fission events and 1.8 pb for EVR-alpha events.Comment: 6 pages, 3 figures, submitted to Phys. Rev.
Quantum Tunneling in Nuclear Fusion
Recent theoretical advances in the study of heavy ion fusion reactions below
the Coulomb barrier are reviewed. Particular emphasis is given to new ways of
analyzing data, such as studying barrier distributions; new approaches to
channel coupling, such as the path integral and Green function formalisms; and
alternative methods to describe nuclear structure effects, such as those using
the Interacting Boson Model. The roles of nucleon transfer, asymmetry effects,
higher-order couplings, and shape-phase transitions are elucidated. The current
status of the fusion of unstable nuclei and very massive systems are briefly
discussed.Comment: To appear in the January 1998 issue of Reviews of Modern Physics. 13
Figures (postscript file for Figure 6 is not available; a hard copy can be
requested from the authors). Full text and figures are also available at
http://nucth.physics.wisc.edu/preprints
Histone 3.3 hotspot mutations in conventional osteosarcomas: a comprehensive clinical and molecular characterization of six H3F3A mutated cases
Background: Histone 3.3 (H3.3) hotspot mutations in bone tumors occur in the vast majority of giant cell tumors of bone (GCTBs; 96%), chondroblastomas (95%) and in a few cases of osteosarcomas. However, clinical presentation, histopathological features, and additional molecular characteristics of H3.3 mutant osteosarcomas are largely unknown. Methods: In this multicentre, retrospective study, a total of 106 conventional high-grade osteosarcomas, across all age groups were re-examined for hotspot mutations in the H3.3 coding genes H3F3A and H3F3B. H3.3 mutant osteosarcomas were re-evaluated in a multidisciplinary manner and analyzed for genome-wide DNA-methylation patterns and DNA copy number aberrations alongside H3.3 wild-type osteosarcomas and H3F3A G34W/L mutant GCTBs. Results: Six osteosarcomas (6/106) carried H3F3A hotspot mutations. No mutations were found in H3F3B. All patients with H3F3A mutant osteosarcoma were older than 30 years with a median age of 65 years. Copy number aberrations that are commonly encountered in high-grade osteosarcomas also occurred in H3F3A mutant osteosarcomas. Unlike a single osteosarcoma with a H3F3A K27M mutation, the DNA methylation profiles of H3F3A G34W/R mutant osteosarcomas were clearly different from H3.3 wild-type osteosarcomas, but more closely related to GCTBs. The most differentially methylated promoters between H3F3A G34W/R mutant and H3.3 wild-type osteosarcomas were in KLLN/PTEN (p < 0.00005) and HIST1H2BB (p < 0.0005). Conclusions: H3.3 mutations in osteosarcomas may occur in H3F3A at mutational hotspots. They are overall rare, but become more frequent in osteosarcoma patients older than 30 years. Osteosarcomas carrying H3F3A G34W/R mutations are associated with epigenetic dysregulation of KLLN/PTEN and HIST1H2BB
Molecular and translational advances in meningiomas.
Meningiomas are the most common primary intracranial neoplasm. The current World Health Organization (WHO) classification categorizes meningiomas based on histopathological features, but emerging molecular data demonstrate the importance of genomic and epigenomic factors in the clinical behavior of these tumors. Treatment options for symptomatic meningiomas are limited to surgical resection where possible and adjuvant radiation therapy for tumors with concerning histopathological features or recurrent disease. At present, alternative adjuvant treatment options are not available in part due to limited historical biological analysis and clinical trial investigation on meningiomas. With advances in molecular and genomic techniques in the last decade, we have witnessed a surge of interest in understanding the genomic and epigenomic landscape of meningiomas. The field is now at the stage to adopt this molecular knowledge to refine meningioma classification and introduce molecular algorithms that can guide prediction and therapeutics for this tumor type. Animal models that recapitulate meningiomas faithfully are in critical need to test new therapeutics to facilitate rapid-cycle translation to clinical trials. Here we review the most up-to-date knowledge of molecular alterations that provide insight into meningioma behavior and are ready for application to clinical trial investigation, and highlight the landscape of available preclinical models in meningiomas
Rosette-forming glioneuronal tumors share a distinct DNA methylation profile and mutations in FGFR1, with recurrent co-mutation of PIK3CA and NF1
Rosette-forming glioneuronal tumor (RGNT) is a rare brain neoplasm that primarily affects young adults. Although alterations affecting the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K) signaling pathway have been associated with this low-grade entity, comprehensive molecular investigations of RGNT in larger series have not been performed to date, and an integrated view of their genetic and epigenetic profiles is still lacking. Here we describe a genome-wide DNA methylation and targeted sequencing-based characterization of a molecularly distinct class of tumors (n = 30), initially identified through genome-wide DNA methylation screening among a cohort of > 30,000 tumors, of which most were diagnosed histologically as RGNT. FGFR1 hotspot mutations were observed in all tumors analyzed, with co-occurrence of PIK3CA mutations in about two-thirds of the cases (63%). Additional loss-of-function mutations in the tumor suppressor gene NF1 were detected in a subset of cases (33%). Notably, in contrast to most other low-grade gliomas, these tumors often displayed co-occurrence of two or even all three of these mutations. Our data highlight that molecularly defined RGNTs are characterized by highly recurrent combined genetic alterations affecting both MAPK and PI3K signaling pathways. Thus, these two pathways appear to synergistically interact in the formation of RGNT, and offer potential therapeutic targets for this disease.</p
Glioblastomas with primitive neuronal component harbor a distinct methylation and copy‑number profle with inactivation of TP53, PTEN, and RB1
Glioblastoma IDH-wildtype presents with a wide histological spectrum. Some features are so distinctive that they are considered as separate histological variants or patterns for the purpose of classification. However, these usually lack defined (epi-)genetic alterations or profiles correlating with this histology. Here, we describe a molecular subtype with overlap to the unique histological pattern of glioblastoma with primitive neuronal component. Our cohort consists of 63 IDH-wildtype glioblastomas that harbor a characteristic DNA methylation profile. Median age at diagnosis was 59.5 years. Copy-number variations and genetic sequencing revealed frequent alterations in TP53, RB1 and PTEN, with fewer gains of chromosome 7 and homozygous CDKN2A/B deletions than usually described for IDH-wildtype glioblastoma. Gains of chromosome 1 were detected in more than half of the cases. A poorly differentiated phenotype with frequent absence of GFAP expression, high proliferation index and strong staining for p53 and TTF1 often caused misleading histological classification as carcinoma metastasis or primitive neuroectodermal tumor. Clinically, many patients presented with leptomeningeal dissemination and spinal metastasis. Outcome was poor with a median overall survival of only 12 months. Overall, we describe a new molecular subtype of IDH-wildtype glioblastoma with a distinct histological appearance and genetic signature.publishedVersio
Development of randomized trials in adults with medulloblastoma - the example of EORTC 1634-BTG/NOA-23
Simple Summary Medulloblastoma is rare after puberty. Among several molecular subgroups that have been described, the sonic hedgehog (SHH) subgroup is highly overrepresented in the post-pubertal population and can be targeted with smoothened (SMO) inhibitors. However, no practice-changing prospective clinical trials have been published in adults to date. Tumors often recur, and treatment toxicity is relevant. Thus, the EORTC 1634-BTG/NOA-23 trial for post-pubertal patients with standard risk medulloblastoma will aim to increase treatment efficacy and to decrease treatment toxicity. Patients will be randomized between standard-dose vs. reduced-dosed radiotherapy, and SHH-subgroup patients will also be randomized between the SMO inhibitor sonidegib (Odomzo(TM,), Sun Pharmaceuticals Industries, Inc., New York, USA) in addition to standard radio-chemotherapy vs. standard radio-chemotherapy alone. In ancillary studies, we will investigate tumor tissue, blood and cerebrospinal fluid samples, magnetic resonance images, and radiotherapy plans to gain information that may improve future treatment. Patients will also be monitored long-term for late side effects of therapy, health-related quality of life, cognitive function, social and professional live outcomes, and reproduction and fertility. In summary, EORTC 1634-BTG/NOA-23 is a unique multi-national effort that will help to council patients and clinical scientists for the appropriate design of treatments and future clinical trials for post-pubertal patients with medulloblastoma. Medulloblastoma is a rare brain malignancy. Patients after puberty are rare and bear an intermediate prognosis. Standard treatment consists of maximal resection plus radio-chemotherapy. Treatment toxicity is high and produces disabling long-term side effects. The sonic hedgehog (SHH) subgroup is highly overrepresented in the post-pubertal and adult population and can be targeted by smoothened (SMO) inhibitors. No practice-changing prospective randomized data have been generated in adults. The EORTC 1634-BTG/NOA-23 trial will randomize patients between standard-dose vs. reduced-dosed craniospinal radiotherapy and SHH-subgroup patients between the SMO inhibitor sonidegib (Odomzo(TM), Sun Pharmaceuticals Industries, Inc., New York, USA) in addition to standard radio-chemotherapy vs. standard radio-chemotherapy alone to improve outcomes in view of decreased radiotherapy-related toxicity and increased efficacy. We will further investigate tumor tissue, blood, and cerebrospinal fluid as well as magnetic resonance imaging and radiotherapy plans to generate information that helps to further improve treatment outcomes. Given that treatment side effects typically occur late, long-term follow-up will monitor classic side effects of therapy, but also health-related quality of life, cognition, social and professional outcome, and reproduction and fertility. In summary, we will generate unprecedented data that will be translated into treatment changes in post-pubertal patients with medulloblastoma and will help to design future clinical trials.Neurolog
Glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA): a molecularly distinct brain tumor type with recurrent NTRK gene fusions
Glioneuronal tumors are a heterogenous group of CNS neoplasms that can be challenging to accurately diagnose. Molecular methods are highly useful in classifying these tumors-distinguishing precise classes from their histological mimics and identifying previously unrecognized types of tumors. Using an unsupervised visualization approach of DNA methylation data, we identified a novel group of tumors (n = 20) that formed a cluster separate from all established CNS tumor types. Molecular analyses revealed ATRX alterations (in 16/16 cases by DNA sequencing and/or immunohistochemistry) as well as potentially targetable gene fusions involving receptor tyrosine-kinases (RTK; mostly NTRK1-3) in all of these tumors (16/16; 100%). In addition, copy number profiling showed homozygous deletions of CDKN2A/B in 55% of cases. Histological and immunohistochemical investigations revealed glioneuronal tumors with isomorphic, round and often condensed nuclei, perinuclear clearing, high mitotic activity and microvascular proliferation. Tumors were mainly located supratentorially (84%) and occurred in patients with a median age of 19 years. Survival data were limited (n = 18) but point towards a more aggressive biology as compared to other glioneuronal tumors (median progression-free survival 12.5 months). Given their molecular characteristics in addition to anaplastic features, we suggest the term glioneuronal tumor with ATRX alteration, kinase fusion and anaplastic features (GTAKA) to describe these tumors. In summary, our findings highlight a novel type of glioneuronal tumor driven by different RTK fusions accompanied by recurrent alterations in ATRX and homozygous deletions of CDKN2A/B. Targeted approaches such as NTRK inhibition might represent a therapeutic option for patients suffering from these tumors
- …