13,025 research outputs found
An analysis of astronaut performance capability in the lunar environment. Volume 1 - Performance problems and requirements for additional research
Analyzing data on expected astronaut performance in lunar environmen
An Analysis of Astronaut Performance Capability in the Lunar Environment. Volume 2 - Performance Capability Support Data
Astronaut performance capability in lunar environmen
Effects of specimen resonances on acoustic-ultrasonic testing
The effects of specimen resonances on acoustic ultrasonic (AU) nondestructive testing were investigated. Selected resonant frequencies and the corresponding normal mode nodal patterns of the aluminum block are measured up to 75.64 kHz. Prominent peaks in the pencil lead fracture and sphere impact spectra from the two transducer locations corresponded exactly to resonant frequencies of the block. It is established that the resonant frequencies of the block dominated the spectral content of the output signal. The spectral content of the output signals is further influenced by the transducer location relative to the resonant frequency nodal lines. Implications of the results are discussed in relation to AU parameters and measurements
Functional brain network architecture supporting the learning of social networks in humans
Most humans have the good fortune to live their lives embedded in richly
structured social groups. Yet, it remains unclear how humans acquire knowledge
about these social structures to successfully navigate social relationships.
Here we address this knowledge gap with an interdisciplinary neuroimaging study
drawing on recent advances in network science and statistical learning.
Specifically, we collected BOLD MRI data while participants learned the
community structure of both social and non-social networks, in order to examine
whether the learning of these two types of networks was differentially
associated with functional brain network topology. From the behavioral data in
both tasks, we found that learners were sensitive to the community structure of
the networks, as evidenced by a slower reaction time on trials transitioning
between clusters than on trials transitioning within a cluster. From the
neuroimaging data collected during the social network learning task, we
observed that the functional connectivity of the hippocampus and
temporoparietal junction was significantly greater when transitioning between
clusters than when transitioning within a cluster. Furthermore, temporoparietal
regions of the default mode were more strongly connected to hippocampus,
somatomotor, and visual regions during the social task than during the
non-social task. Collectively, our results identify neurophysiological
underpinnings of social versus non-social network learning, extending our
knowledge about the impact of social context on learning processes. More
broadly, this work offers an empirical approach to study the learning of social
network structures, which could be fruitfully extended to other participant
populations, various graph architectures, and a diversity of social contexts in
future studies
Performance Analysis of the Spaceborne Laser Ranging System
The 'spaceborne laser ranging system' is a proposed short pulse laser on board an orbiting spacecraft. It measures the distances between the spacecraft and many laser retroreflectors (targets) deployed on the earth's surface. The precision of these range measurements was assumed to be about plus or minus 2 cm. These measurements were then used together with the orbital dynamics of the spacecraft to derive the intersite vector between the laser ground targets. The errors associated with this vector were on the order of 1 to 2 cm. The baseline distances determined range from 25 km to 1200 km. By repeating the measurements of the intersite vector, strain and strain rate errors were estimated. The realizable precision for intersite distance determination was estimated to be on the order of 0.5 cm at 300 km and about 1.5 cm at 1200 km. The corresponding inaccuracies for the intersite distances were larger, than is 1 cm and 3.5 cm respectively. The corresponding precision in the vertical direction was 1 cm and 3 cm
- …