100 research outputs found
The climate of HD 189733b from fourteen transits and eclipses measured by Spitzer
We present observations of seven transits and seven eclipses of the
transiting planet system HD 189733 taken with Spitzer IRAC at 8 microns. We use
a new correction for the detector ramp variation with a double-exponential
function. Our main findings are: (1) an upper limit on the variability of the
day-side planet flux of 2.7% (68% confidence); (2) the most precise set of
transit times measured for a transiting planet, with an average accuracy of 3
seconds; (3) a lack of transit-timing variations, excluding the presence of
second planets in this system above 20% of the mass of Mars in low-order
mean-motion resonance at 95% confidence; (4) a confirmation of the planet's
phase variation, finding the night side is 64% as bright as the day side, as
well as an upper limit on the night-side variability of 17% (68% confidence);
(5) a better correction for stellar variability at 8 micron causing the phase
function to peak 3.5 hrs before secondary eclipse, confirming that the
advection and radiation timescales are comparable at the 8 micron photosphere;
(6) variation in the depth of transit, which possibly implies variations in the
surface brightness of the portion of the star occulted by the planet, posing a
fundamental limit on non-simultaneous multi-wavelength transit absorption
measurements of planet atmospheres; (7) a measurement of the infrared
limb-darkening of the star, in agreement with stellar atmosphere models; (8) an
offset in the times of secondary eclipse of 69 sec, which is mostly accounted
for by a 31 sec light travel time delay and 33 sec delay due to the shift of
ingress and egress by the planet hot spot; this confirms that the phase
variation is due to an offset hot spot on the planet; (9) a retraction of the
claimed eccentricity of this system due to the offset of secondary eclipse; and
(10) high precision measurements of the parameters of this system.Comment: 18 pages, 19 figures, accepted for publication in the Astrophysical
Journa
A Spitzer Transmission Spectrum for the Exoplanet GJ 436b, Evidence for Stellar Variability, and Constraints on Dayside Flux Variations
In this paper we describe a uniform analysis of eight transits and eleven
secondary eclipses of the extrasolar planet GJ 436b obtained in the 3.6, 4.5,
and 8.0 micron bands using the IRAC instrument on the Spitzer Space Telescope
between UT 2007 June 29 and UT 2009 Feb 4. We find that the best-fit transit
depths for visits in the same bandpass can vary by as much as 8% of the total
(4.7 sigma significance) from one epoch to the next. Although we cannot
entirely rule out residual detector effects or a time-varying, high-altitude
cloud layer in the planet's atmosphere as the cause of these variations, we
consider the occultation of active regions on the star in a subset of the
transit observations to be the most likely explanation. We reconcile the
presence of magnetically active regions with the lack of significant visible or
infrared flux variations from the star by proposing that the star's spin axis
is tilted with respect to our line of sight, and that the planet's orbit is
therefore likely to be misaligned. These observations serve to illustrate the
challenges associated with transmission spectroscopy of planets orbiting
late-type stars; we expect that other systems, such as GJ 1214, may display
comparably variable transit depths. Our measured 8 micron secondary eclipse
depths are consistent with a constant value, and we place a 1 sigma upper limit
of 17% on changes in the planet's dayside flux in this band. Averaging over the
eleven visits gives us an improved estimate of 0.0452% +/- 0.0027% for the
secondary eclipse depth. We combine timing information from our observations
with previously published data to produce a refined orbital ephemeris, and
determine that the best-fit transit and eclipse times are consistent with a
constant orbital period. [ABRIDGED]Comment: 26 pages, 18 figures, 7 tables in emulateapj format. Accepted for
publication in Ap
A Featureless Infrared Transmission Spectrum for the Super-puff Planet Kepler-79d
Extremely low-density planets ("super-puffs") are a small but intriguing subset of the transiting planet population. With masses in the super-Earth range (1 – 10 M_⊕) and radii akin to those of giant planets (> 4 R_⊕), their large envelopes may have been accreted beyond the water snow line and many appear to be susceptible to catastrophic mass loss. Both the presence of water and the importance of mass loss can be explored using transmission spectroscopy. Here, we present new Hubble space telescope WFC3 spectroscopy and updated Kepler transit depth measurements for the super-puff Kepler-79d. We do not detect any molecular absorption features in the 1.1 − 1.7 μm WFC3 bandpass, and the combined Kepler and WFC3 data are consistent with a flat-line model, indicating the presence of aerosols in the atmosphere. We compare the shape of Kepler-79d's transmission spectrum to predictions from a microphysical haze model that incorporates an outward particle flux due to ongoing mass loss. We find that photochemical hazes offer an attractive explanation for the observed properties of super-puffs like Kepler-79d, as they simultaneously render the near-infrared spectrum featureless and reduce the inferred envelope mass-loss rate by moving the measured radius (optical depth unity surface during transit) to lower pressures. We revisit the broader question of mass-loss rates for super-puffs and find that the age estimates and mass-loss rates for the majority of super-puffs can be reconciled if hazes move the photosphere from the typically assumed pressure of ~10 mbar to ~10 µbar
HAT-P-24b: An inflated hot-Jupiter on a 3.36d period transiting a hot, metal-poor star
We report the discovery of HAT-P-24b, a transiting extrasolar planet orbiting
the moderately bright V=11.818 F8 dwarf star GSC 0774-01441, with a period P =
3.3552464 +/- 0.0000071 d, transit epoch Tc = 2455216.97669 +/- 0.00024
(BJD_UTC), and transit duration 3.653 +/- 0.025 hours. The host star has a mass
of 1.191 +/- 0.042 Msun, radius of 1.317 +/- 0.068 Rsun, effective temperature
6373 +/- 80 K, and a low metallicity of [Fe/H] = -0.16 +/- 0.08. The planetary
companion has a mass of 0.681 +/- 0.031 MJ, and radius of 1.243 +/- 0.072 RJ
yielding a mean density of 0.439 +/- 0.069 g cm-3 . By repeating our global
fits with different parameter sets, we have performed a critical investigation
of the fitting techniques used for previous HAT planetary discoveries. We find
that the system properties are robust against the choice of priors. The effects
of fixed versus fitted limb darkening are also examined. HAT-P-24b probably
maintains a small eccentricity of e = 0.052 +0.022 -0.017, which is accepted
over the circular orbit model with false alarm probability 5.8%. In the absence
of eccentricity pumping, this result suggests HAT-P-24b experiences less tidal
dissipation than Jupiter. Due to relatively rapid stellar rotation, we estimate
that HAT-P-24b should exhibit one of the largest known Rossiter-McLaughlin
effect amplitudes for an exoplanet (deltaVRM ~ 95 m/s) and thus a precise
measurement of the sky-projected spin-orbit alignment should be possible.Comment: 13 pages with 4 figures and 8 tables in emulateapj format. Minor
changes. Accepted in The Astrophysical Journa
A chemical survey of exoplanets with ARIEL
Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 μm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio
Kepler-14b: A massive hot Jupiter transiting an F star in a close visual binary
We present the discovery of a hot Jupiter transiting an F star in a close visual (03 sky projected angular separation) binary system. The dilution of the host star's light by the nearly equalmagnitude stellar companion (∼0.5mag fainter) significantly affects the derived planetary parameters, and if left uncorrected, leads to an underestimate of the radius and mass of the planet by 10% and 60%, respectively. Other published exoplanets, which have not been observed with high-resolution imaging, could similarly have unresolved stellar companions and thus have incorrectly derived planetary parameters. Kepler-14b (KOI-98) has a period of P = 6.790 days and, correcting for the dilution, has a mass of Mp = 8.40+0.35 -0.34 M J and a radius of Rp = 1.136+0.073 -0.054 R J, yielding a mean density of ρp = 7.1 ± 1.1 g cm-3
Biochemical and Structural Insights into the Mechanisms of SARS Coronavirus RNA Ribose 2′-O-Methylation by nsp16/nsp10 Protein Complex
The 5′-cap structure is a distinct feature of eukaryotic mRNAs, and eukaryotic viruses generally modify the 5′-end of viral RNAs to mimic cellular mRNA structure, which is important for RNA stability, protein translation and viral immune escape. SARS coronavirus (SARS-CoV) encodes two S-adenosyl-L-methionine (SAM)-dependent methyltransferases (MTase) which sequentially methylate the RNA cap at guanosine-N7 and ribose 2′-O positions, catalyzed by nsp14 N7-MTase and nsp16 2′-O-MTase, respectively. A unique feature for SARS-CoV is that nsp16 requires non-structural protein nsp10 as a stimulatory factor to execute its MTase activity. Here we report the biochemical characterization of SARS-CoV 2′-O-MTase and the crystal structure of nsp16/nsp10 complex bound with methyl donor SAM. We found that SARS-CoV nsp16 MTase methylated m7GpppA-RNA but not m7GpppG-RNA, which is in contrast with nsp14 MTase that functions in a sequence-independent manner. We demonstrated that nsp10 is required for nsp16 to bind both m7GpppA-RNA substrate and SAM cofactor. Structural analysis revealed that nsp16 possesses the canonical scaffold of MTase and associates with nsp10 at 1∶1 ratio. The structure of the nsp16/nsp10 interaction interface shows that nsp10 may stabilize the SAM-binding pocket and extend the substrate RNA-binding groove of nsp16, consistent with the findings in biochemical assays. These results suggest that nsp16/nsp10 interface may represent a better drug target than the viral MTase active site for developing highly specific anti-coronavirus drugs
A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer's disease
A genome-wide survival analysis of 14,406 Alzheimer's disease (AD) cases and 25,849 controls identified eight previously reported AD risk loci and 14 novel loci associated with age at onset. Linkage disequilibrium score regression of 220 cell types implicated the regulation of myeloid gene expression in AD risk. The minor allele of rs1057233 (G), within the previously reported CELF1 AD risk locus, showed association with delayed AD onset and lower expression of SPI1 in monocytes and macrophages. SPI1 encodes PU.1, a transcription factor critical for myeloid cell development and function. AD heritability was enriched within the PU.1 cistrome, implicating a myeloid PU.1 target gene network in AD. Finally, experimentally altered PU.1 levels affected the expression of mouse orthologs of many AD risk genes and the phagocytic activity of mouse microglial cells. Our results suggest that lower SPI1 expression reduces AD risk by regulating myeloid gene expression and cell function
The James Webb Space Telescope
The James Webb Space Telescope (JWST) is a large (6.6m), cold (50K),
infrared-optimized space observatory that will be launched early in the next
decade. The observatory will have four instruments: a near-infrared camera, a
near-infrared multi-object spectrograph, and a tunable filter imager will cover
the wavelength range, 0.6 to 5.0 microns, while the mid-infrared instrument
will do both imaging and spectroscopy from 5.0 to 29 microns. The JWST science
goals are divided into four themes. The End of the Dark Ages: First Light and
Reionization theme seeks to identify the first luminous sources to form and to
determine the ionization history of the early universe. The Assembly of
Galaxies theme seeks to determine how galaxies and the dark matter, gas, stars,
metals, morphological structures, and active nuclei within them evolved from
the epoch of reionization to the present day. The Birth of Stars and
Protoplanetary Systems theme seeks to unravel the birth and early evolution of
stars, from infall on to dust-enshrouded protostars to the genesis of planetary
systems. The Planetary Systems and the Origins of Life theme seeks to determine
the physical and chemical properties of planetary systems including our own,
and investigate the potential for the origins of life in those systems. To
enable these observations, JWST consists of a telescope, an instrument package,
a spacecraft and a sunshield. The telescope consists of 18 beryllium segments,
some of which are deployed. The segments will be brought into optical alignment
on-orbit through a process of periodic wavefront sensing and control. The JWST
operations plan is based on that used for previous space observatories, and the
majority of JWST observing time will be allocated to the international
astronomical community through annual peer-reviewed proposal opportunities.Comment: 96 pages, including 48 figures and 15 tables, accepted by Space
Science Review
- …