116 research outputs found
Mutual heavy ion dissociation in peripheral collisions at ultrarelativistic energies
We study mutual dissociation of heavy nuclei in peripheral collisions at
ultrarelativistic energies. Earlier this process was proposed for beam
luminosity monitoring via simultaneous registration of forward and backward
neutrons in zero degree calorimeters at Relativistic Heavy Ion Collider.
Electromagnetic dissociation of heavy ions is considered in the framework of
the Weizsacker-Williams method and simulated by the RELDIS code. Photoneutron
cross sections measured in different experiments and calculated by the GNASH
code are used as input for the calculations of dissociation cross sections. The
difference in results obtained with different inputs provides a realistic
estimation for the systematic uncertainty of the luminosity monitoring method.
Contribution to simultaneous neutron emission due to grazing nuclear
interactions is calculated within the abrasion model. Good description of CERN
SPS experimental data on Au and Pb dissociation gives confidence in predictive
power of the model for AuAu and PbPb collisions at RHIC and LHC.Comment: 46 pages with 7 tables and 13 figures, numerical integration accuracy
improved, next-to-leading-order corrections include
Position resolution and particle identification with the ATLAS EM calorimeter
In the years between 2000 and 2002 several pre-series and series modules of
the ATLAS EM barrel and end-cap calorimeter were exposed to electron, photon
and pion beams. The performance of the calorimeter with respect to its finely
segmented first sampling has been studied. The polar angle resolution has been
found to be in the range 50-60 mrad/sqrt(E (GeV)). The neutral pion rejection
has been measured to be about 3.5 for 90% photon selection efficiency at pT=50
GeV/c. Electron-pion separation studies have indicated that a pion fake rate of
(0.07-0.5)% can be achieved while maintaining 90% electron identification
efficiency for energies up to 40 GeV.Comment: 32 pages, 22 figures, to be published in NIM
Search for Nucleon Decays induced by GUT Magnetic Monopoles with the MACRO Experiment
The interaction of a Grand Unification Magnetic Monopole with a nucleon can
lead to a barion-number violating process in which the nucleon decays into a
lepton and one or more mesons (catalysis of nucleon decay). In this paper we
report an experimental study of the effects of a catalysis process in the MACRO
detector. Using a dedicated analysis we obtain new magnetic monopole (MM) flux
upper limits at the level of for
, based on the search for
catalysis events in the MACRO data. We also analyze the dependence of the MM
flux limit on the catalysis cross section.Comment: 12 pages, Latex, 10 figures and 2 Table
Search for massive rare particles with MACRO
Massive rare particles have been searched for in the penetrating cosmic
radiation using the MACRO apparatus at the Gran Sasso National Laboratories.
Liquid scintillators, streamer tubes and nuclear track detectors have been used
to search for magnetic monopoles (MMs).
Based on no observation of such signals, stringent flux limits are
established for MMs as slow as a few 10^(-5)c. The methods based on the
scintillator and on the nuclear track subdetectors were also applied to search
for nuclearites. Preliminary results of the searches for charged Q-balls are
also presented.Comment: 20 pages, 9 EPS figures included with epsfi
Observation of the Shadowing of Cosmic Rays by the Moon using a Deep Underground Detector
Using data collected by the MACRO experiment during the years 1989-1996, we
show evidence for the shadow of the moon in the underground cosmic ray flux
with a significance of 3.6 sigma. This detection of the shadowing effect is the
first by an underground detector. A maximum-likelihood analysis is used to
determine that the angular resolution of the apparatus is 0.9+/-0.3 degrees.
These results demonstrate MACRO's capabilities as a muon telescope by
confirming its absolute pointing ability and quantifying its angular
resolution.Comment: 14 pages, 8 figures Submitted to Phys. Rev.
The primary cosmic ray composition between 10**15 and 10**16 eV from Extensive Air Showers electromagnetic and TeV muon data
The cosmic ray primary composition in the energy range between 10**15 and
10**16 eV, i.e., around the "knee" of the primary spectrum, has been studied
through the combined measurements of the EAS-TOP air shower array (2005 m
a.s.l., 10**5 m**2 collecting area) and the MACRO underground detector (963 m
a.s.l., 3100 m w.e. of minimum rock overburden, 920 m**2 effective area) at the
National Gran Sasso Laboratories. The used observables are the air shower size
(Ne) measured by EAS-TOP and the muon number (Nmu) recorded by MACRO. The two
detectors are separated on average by 1200 m of rock, and located at a
respective zenith angle of about 30 degrees. The energy threshold at the
surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons
are produced in the early stages of the shower development and in a kinematic
region quite different from the one relevant for the usual Nmu-Ne studies. The
measurement leads to a primary composition becoming heavier at the knee of the
primary spectrum, the knee itself resulting from the steepening of the spectrum
of a primary light component (p, He). The result confirms the ones reported
from the observation of the low energy muons at the surface (typically in the
GeV energy range), showing that the conclusions do not depend on the production
region kinematics. Thus, the hadronic interaction model used (CORSIKA/QGSJET)
provides consistent composition results from data related to secondaries
produced in a rapidity region exceeding the central one. Such an evolution of
the composition in the knee region supports the "standard" galactic
acceleration/propagation models that imply rigidity dependent breaks of the
different components, and therefore breaks occurring at lower energies in the
spectra of the light nuclei.Comment: Submitted to Astroparticle Physic
Neutrino astronomy with the MACRO detector
High energy gamma ray astronomy is now a well established field and several
sources have been discovered in the region from a few GeV up to several TeV. If
sources involving hadronic processes exist, the production of photons would be
accompanied by neutrinos too. Other possible neutrino sources could be related
to the annihilation of WIMPs at the center of galaxies with black holes.
We present the results of a search for point-like sources using 1100
upward-going muons produced by neutrino interactions in the rock below and
inside the MACRO detector in the underground Gran Sasso Laboratory. These data
show no evidence for a possible neutrino point-like source or for possible
correlations between gamma ray bursts and neutrinos. They have been used to set
flux upper limits for candidate point-like sources which are in the range
10^-14-10^-15 cm-2 s-1.Comment: 37 pages, 15 figures, replacement due to a typo in tab. 6, AASLaTex,
submitted to Ap
Measurement of the atmospheric neutrino-induced upgoing muon flux using MACRO
We present a measurement of the flux of neutrino-induced upgoing muons
(~100 GeV) using the MACRO detector. The ratio of the number of observed
to expected events integrated over all zenith angles is 0.74 +/- 0.036 (stat)
+/- 0.046(systematic) +/- 0.13 (theoretical). The observed zenith distribution
for -1.0 < cos(theta) < -0.1 does not fit well with the no oscillation
expectation, giving a maximum probability for chi^2 of 0.1%. The acceptance of
the detector has been extensively studied using downgoing muons, independent
analyses and Monte-Carlo simulations. The other systematic uncertainties cannot
be the source of the discrepancies between the data and expectations. We have
investigated whether the observed number of events and the shape of the zenith
distribution can be explained by a neutrino oscillation hypothesis. Fitting
either the flux or zenith distribution independently yields mixing parameters
of sin^2 (2theta)=1.0 and delta m^2 of a few times 10^-3 eV^2. However, the
observed zenith distribution does not fit well with any expectations giving a
maximum probability for chi^2 of 5% for the best oscillation hypothesis, and
the combined probability for the shape and number of events is 17%. We conclude
that these data favor a neutrino oscillation hypothesis, but with unexplained
structure in the zenith distribution not easily explained by either the
statistics or systematics of the experiment.Comment: 7 pages (two-column) with 4 figure
Limits on dark matter WIMPs using upward-going muons in the MACRO detector
We perform an indirect search for Weakly Interacting Massive Particles
(WIMPs) using the MACRO detector to look for neutrino-induced upward-going
muons resulting from the annihilation of WIMPs trapped in the Sun and Earth.
The search is conducted in various angular cones centered on the Sun and Earth
to accommodate a range of WIMP masses. No significant excess over the
background from atmospheric neutrinos is seen and limits are placed on the
upward-going muon fluxes from Sun and Earth. These limits are used to constrain
neutralino particle parameters from supersymmetric theory, including those
suggested by recent results from DAMA/NaI.Comment: 14 pages, 7 figures, submitted to Phys. Rev.
Construction, assembly and tests of the ATLAS electromagnetic end-cap calorimeters
The construction and the assembly of the two end-caps of the ATLAS liquid argon electromagnetic calorimeter as well as their test and qualification programs are described. The work described here started at the beginning of 2001 and lasted for approximately three years. The results of the qualification tests performed before installation in the LHC ATLAS pit are given. The detectors are now installed in the ATLAS cavern, full of liquid argon and being commissioned. The complete detectors coverage is powered with high voltage and readout
- âŠ