36 research outputs found
A Soluble Form of the High Affinity IgE Receptor, Fc-Epsilon-RI, Circulates in Human Serum
Soluble IgE receptors are potential in vivo modulators of
IgE-mediated immune responses and are thus important for our basic understanding
of allergic responses. We here characterize a novel soluble version of the
IgE-binding alpha-chain of Fc-epsilon-RI (sFcεRI), the high affinity
receptor for IgE. sFcεRI immunoprecipitates as a protein of ∼40 kDa and
contains an intact IgE-binding site. In human serum, sFcεRI is found as a
soluble free IgE receptor as well as a complex with IgE. Using a newly
established ELISA, we show that serum sFcεRI levels correlate with serum IgE
in patients with elevated IgE. We also show that serum of individuals with
normal IgE levels can be found to contain high levels of sFcεRI. After
IgE-antigen-mediated crosslinking of surface FcεRI, we detect sFcεRI in
the exosome-depleted, soluble fraction of cell culture supernatants. We further
show that sFcεRI can block binding of IgE to FcεRI expressed at the cell
surface. In summary, we here describe the alpha-chain of FcεRI as a
circulating soluble IgE receptor isoform in human serum
Expression of High-Affinity IgE Receptor on Human Peripheral Blood Dendritic Cells in Children
BACKGROUND: In a mouse model of viral induced atopic disease, expression of FcεRI on dendritic cells is critical. While adult human conventional (cDC) and plasmacytoid (pDC) dendritic cells have been shown to express FcεRI, it is not known if this receptor is expressed in childhood and how its expression is governed by IgE. METHODS: Following informed consent of subjects (n = 27, aged 12-188 months), peripheral blood was stained for surface expression of CD19, ILT7, CD1c, IgE, FcεRI and analyzed by flow cytometry (cDC: CD19(-) ILT7(-) CD1c(+); pDC: CD19(-) ILT7(+) CD1c(-)). Total and specific serum IgE levels to food and inhalant allergens were determined by ImmunoCAP, and the relationship between FcεRI expression on dendritic cells and sensitization, free IgE, cell bound IgE, and age was determined. RESULTS: Independent of sensitization status, FcεRI expression was noted on cDC and pDC as early as 12 months of age. Serum IgE level correlated with expression of FcεRI on cDC, but not pDC. Based on the concentration of IgE, a complex relationship was found between surface bound IgE and expression of FcεRI on cDC. pDC exhibited a linear relationship of FcεRI expression and bound IgE that was consistent through all IgE concentrations. CONCLUSIONS: In children, FcεRI expression on cDC and pDC is modulated differently by serum and cell bound IgE. IgE governance of FcεRI expression on cDC depends upon a complex relationship. Further studies are needed to determine the functional roles of FcεRI on cDC and pDC
Primary Ciliary Dyskinesia Due to Microtubular Defects is Associated with Worse Lung Clearance Index
PURPOSE: Primary ciliary dyskinesia (PCD) is characterised by repeated upper and lower respiratory tract infections, neutrophilic airway inflammation and obstructive airway disease. Different ultrastructural ciliary defects may affect lung function decline to different degrees. Lung clearance index (LCI) is a marker of ventilation inhomogeneity that is raised in some but not all patients with PCD. We hypothesised that PCD patients with microtubular defects would have worse (higher) LCI than other PCD patients. METHODS: Spirometry and LCI were measured in 69 stable patients with PCD. Age at testing, age at diagnosis, ethnicity, ciliary ultrastructure, genetic screening result and any growth of Pseudomonas aeruginosa was recorded. RESULTS: Lung clearance index was more abnormal in PCD patients with microtubular defects (median 10.24) than those with dynein arm defects (median 8.3, p = 0.004) or normal ultrastructure (median 7.63, p = 0.0004). Age is correlated with LCI, with older patients having worse LCI values (p = 0.03, r = 0.3). CONCLUSION: This study shows that cilia microtubular defects are associated with worse LCI in PCD than dynein arm defects or normal ultrastructure. The patient's age at testing is also associated with a higher LCI. Patients at greater risk of obstructive lung disease should be considered for more aggressive management. Differences between patient groups may potentially open avenues for novel treatments
The disease-specific clinical trial network for primary ciliary dyskinesia: PCD-CTN
Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterised by impaired mucociliary clearance leading to irreversible lung damage. In contrast to other rare lung diseases like cystic fibrosis (CF), there are only few clinical trials and limited evidence-based treatments. Management is mainly based on expert opinions and treatment is challenging due to a wide range of clinical manifestations and disease severity. To improve clinical and translational research and facilitate development of new treatments, the clinical trial network for PCD (PCD-CTN) was founded in 2020 under the framework of the European Reference Network (ERN)-LUNG PCD Core. Applications from European PCD sites interested in participating in the PCD-CTN were requested. Inclusion criteria consisted of patient numbers, membership of ERN-LUNG PCD Core, use of associated standards of care, experience in PCD and/or CF clinical research, resources to run clinical trials, good clinical practice (GCP) certifications and institutional support. So far, applications from 22 trial sites in 18 European countries have been approved, including >1400 adult and >1600 paediatric individuals with PCD. The PCD-CTN is headed by a coordinating centre and consists of a steering and executive committee, a data safety monitoring board and committees for protocol review, training and standardisation. A strong association with patient organisations and industrial companies are further cornerstones. All participating trial sites agreed on a code of conduct. As CTNs from other diseases have demonstrated successfully, this newly formed PCD-CTN operates to establish evidence-based treatments for this orphan disease and to bring new personalised treatment approaches to patients
The disease-specific clinical trial network for primary ciliary dyskinesia: PCD-CTN
Primary ciliary dyskinesia (PCD) is a rare genetic disorder characterised by impaired mucociliary clearance leading to irreversible lung damage. In contrast to other rare lung diseases like cystic fibrosis (CF), there are only few clinical trials and limited evidence-based treatments. Management is mainly based on expert opinions and treatment is challenging due to a wide range of clinical manifestations and disease severity. To improve clinical and translational research and facilitate development of new treatments, the clinical trial network for PCD (PCD-CTN) was founded in 2020 under the framework of the European Reference Network (ERN)-LUNG PCD Core. Applications from European PCD sites interested in participating in the PCD-CTN were requested. Inclusion criteria consisted of patient numbers, membership of ERN-LUNG PCD Core, use of associated standards of care, experience in PCD and/or CF clinical research, resources to run clinical trials, good clinical practice (GCP) certifications and institutional support. So far, applications from 22 trial sites in 18 European countries have been approved, including >1400 adult and >1600 paediatric individuals with PCD. The PCD-CTN is headed by a coordinating centre and consists of a steering and executive committee, a data safety monitoring board and committees for protocol review, training and standardisation. A strong association with patient organisations and industrial companies are further cornerstones. All participating trial sites agreed on a code of conduct. As CTNs from other diseases have demonstrated successfully, this newly formed PCD-CTN operates to establish evidence-based treatments for this orphan disease and to bring new personalised treatment approaches to patients
Virtual sensor models for real-time applications
Increased complexity and severity of future driver assistance systems demand
extensive testing and validation. As supplement to road tests, driving
simulations offer various benefits. For driver assistance functions the
perception of the sensors is crucial. Therefore, sensors also have to be
modeled. In this contribution, a statistical data-driven sensor-model, is
described. The state-space based method is capable of modeling various types
behavior. In this contribution, the modeling of the position estimation of an
automotive radar system, including autocorrelations, is presented. For
rendering real-time capability, an efficient implementation is presented
Allergen specific responses in cord and adult blood are differentially modulated in the presence of endotoxins.
BACKGROUND: Endotoxins are common contaminants in allergen preparations and affect antigen-specific cellular responses. Distinct effects of endotoxin on cells in human umbilical cord and adult blood are poorly defined. OBJECTIVES: To examine the effect of endotoxins in allergen preparations on cellular responses in human cord and peripheral blood (PB). METHODS: The endotoxin content in β lactoglobulin (BLG), the peanut allergen Ara h 1 and the major birch pollen allergen Bet v 1 was assessed. Proliferation and cytokine response of mononuclear cells towards contaminated and lipopolysaccharide (LPS)-free allergens were evaluated at different time-points. Fractions of contaminated BLG were generated and assayed on their immuno-stimulatory capacity. The involvement of toll-like receptor (TLR) 2 and 4 was investigated by blocking antibodies and TLR-transfected human embryonic kidney cells. RESULTS: The proliferative response of cord blood (CB)-derived mononuclear cells towards allergen-preparations at day 3 was related to the level of LPS contamination. At day 7, proliferation was also detected in the absence of endotoxin. Cytokine production in CB was strongly affected by the content of endotoxin, TLR-4 dependent and not related to the allergen content. Allergen- and endotoxin-induced proliferative responses were generally significantly higher in CB than in adult blood. CONCLUSION: Endotoxins in allergen preparations confound allergen-specific cellular responses. The impact of these contaminations varies with the blood source (CB vs. PB), the type of allergen and is time- and dose-dependent. Cite this as: T. Eiwegger, E. Mayer, S. Brix, I. Schabussova, E. Dehlink, B. Bohle, V. Barkholt and Z. Szépfalusi, Clinical and Experimental Allergy, 2008 (38) 1627–1634