114 research outputs found

    Rocket Observations of Far-Ultraviolet Dust Scattering in NGC 2023

    Get PDF
    The reflection nebula NGC 2023 was observed by a rocket-borne long-slit imaging spectrograph in the 900 -- 1400 Angstrom bandpass on 2000 February 11. A spectrum of the star, as well as that of the nebular scattered light, was recorded. Through the use of a Monte Carlo modeling process, the scattering properties of the dust were derived. The albedo is low, 0.2 -- 0.4, and decreasing toward shorter wavelengths, while the phase function asymmetry parameter is consistent with highly forward-scattering grains, g~0.85. The decrease in albedo, while the optical depth increases to shorter wavelengths, implies that the far-UV rise in the extinction curve is due to an increase in absorption efficiency.Comment: 16 pages, 11 figures, accepted for publication in the Astrophysical Journa

    Rocket and FUSE Observations of IC 405: Differential Extinction and Fluorescent Molecular Hydrogen

    Full text link
    We present far-ultraviolet spectroscopy of the emission/reflection nebula IC 405 obtained by a rocket-borne long-slit spectrograph and the Far Ultraviolet Spectroscopic Explorer. Both data sets show a rise in the ratio of the nebular surface brightness to stellar flux (S/F_*) of approximately two orders of magnitude towards the blue end of the far-UV bandpass. Scattering models using simple dust geometries fail to reproduce the observed S/F_* for realistic grain properties. The high spectral resolution of the FUSE data reveals a rich fluorescent molecular hydrogen spectrum ~1000" north of the star that is clearly distinguished from the steady blue continuum. The S/F_* remains roughly constant at all nebular pointings, showing that fluorescent molecular hydrogen is not the dominant cause for the blue rise. We discuss three possible mechanisms for the ``Blue Dust'': differential extinction of the dominant star (HD 34078), unusual dust grain properties, and emission from nebular dust. We conclude that uncertainties in the nebular geometry and the degree of dust clumping are most likely responsible for the blue rise. As an interesting consequence of this result, we consider how IC 405 would appear in a spatially unresolved observation. If IC 405 was observed with a spatial resolution of less than 0.4 pc, for example, an observer would infer a far-UV flux that was 2.5 times the true value, giving the appearance of a stellar continuum that was less extinguished than radiation from the surrounding nebula, an effect that is reminiscent of the observed ultraviolet properties of starburst galaxies.Comment: 8 pages, 9 figures, using emulateapj, ApJ - accepte

    On the Correlation Between CO Absorption and Far-Ultraviolet Non-Linear Extinction Toward Galactic OB Stars

    Get PDF
    A sample of 59 sight lines to reddened Galactic OB stars was examined for correlations of the strength of the CO Fourth Positive (A - X) absorption band system with the ultraviolet interstellar extinction curve parameters. We used archival high-dispersion NEWSIPS IUE spectra to measure the CO absorption for comparison to parametric fits of the extinction curves from the literature. A strong correlation with the non-linear far-UV curvature term was found with greater absorption, normalized to E(B-V), being associated with more curvature. A weaker trend with the linear extinction term was also found. Mechanisms for enhancing CO in dust environments exhibiting high non-linear curvature are discussed.Comment: 10 pages, including 6 figures. LaTeX2e (emulateapj5.sty). To appear in ApJ, Sep 20, 200

    Fluorescent Molecular Hydrogen Emission in IC 63: FUSE, HUT, and Rocket Observations

    Full text link
    We present far-ultraviolet observations of IC 63, an emission/reflection nebula illuminated by the B0.5IV star gamma Cassiopeia, located 1.3 pc from the nebula. Molecular hydrogen fluorescence was detected first in IC 63 by IUE and later at shorter wavelengths by ORFEUS. Here we present Far Ultraviolet Spectroscopic Explorer (FUSE) observations towards three locations in the nebula, complemented by Hopkins Ultraviolet Telescope (HUT) data on the central nebular position. In addition, we present a sounding rocket calibration of a FUSE spectrum of gamma Cas. Molecular hydrogen fluorescence is detected in all three FUSE pointings. The intensity of this emission as well as the contributions from other species are seen to vary with position. The absolute flux calibration of the sounding rocket data allows us to reliably predict the radiation field incident on IC 63. We use these data to test models of the fluorescent process. Our modeling resolves the perceived discrepancy between the existing ultraviolet observations and achieves a satisfactory agreement with the H_2 rotational structure observed with FUSE.Comment: 7 pages, 6 figures, using emulateapj. Accepted by Ap

    Potential Variations in the Interstellar N I Abundance

    Full text link
    We present Far Ultraviolet Spectroscopic Explorer (FUSE) and Space Telescope Imaging Spectrograph observations of the weak interstellar N I doublet at 1160 Angstroms toward 17 high-density sight lines [N(Htot)>=10^21 cm^-2]. When combined with published data, our results reveal variations in the fractional N I abundance showing a systematic deficiency at large N(Htot). At the FUSE resolution (~20 km s^-1), the effects of unresolved saturation cannot be conclusively ruled out, although O I at 1356 Angstroms shows little evidence of saturation. We investigated the possibility that the N I variability is due to the formation of N_2 in our mostly dense regions. The 0-0 band of the c'_4 ^1Sigma^+_u - X ^1Sigma^+_g transition of N_2 at 958 Angstroms should be easily detected in our FUSE data; for 10 of the denser sight lines, N_2 is not observed at a sensitivity level of a few times 10^14 cm^-2. The observed N I variations are suggestive of an incomplete understanding of nitrogen chemistry. Based on observations made with the NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer, which is operated for NASA by the Johns Hopkins University under NASA contract NAS 5-32985, and the NASA/ESA Hubble Space Telescope, obtained from the Multimission Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under the NASA contract NAS 5-26555.Comment: 12 pages, 3 figures, accepted for publication in ApJ Letter

    Central Stars of Planetary Nebulae in the Large Magellanic Cloud: A Far-UV Spectroscopic Analysis

    Full text link
    We observed seven central stars of planetary nebulae (CSPN) in the Large Magellanic Cloud (LMC) with the Far Ultraviolet Spectroscopic Explorer (FUSE), and performed a model-based analysis of these spectra in conjunction with Hubble Space Telescope (HST) spectra in the UV and optical range to determine the stellar and nebular parameters. Most of the objects show wind features, and they have effective temperatures ranging from 38 to 60 kK with mass-loss rates of ~= 5x10^-8 Msun/yr. Five of the objects have typical LMC abundances. One object (SMP LMC 61) is a [WC4] star, and we fit its spectra with He/C/O-rich abundances typical of the [WC] class, and find its atmosphere to be iron-deficient. Most objects have very hot (T ~> 2000 K) molecular hydrogen in their nebulae, which may indicate a shocked environment. One of these (SMP LMC 62) also displays OVI 1032-38 nebular emission lines, rarely observed in PN.Comment: 53 pages, 15 figures (11 color). Accepted for publication in Ap
    • 

    corecore