27 research outputs found

    Stakeholders’ Perspective on Groundwater Management in Four Water-Stressed Mediterranean Areas: Priorities and Challenges

    Get PDF
    Recent studies highlight the fragility of the Mediterranean basin against climate stresses and the difficulties of managing the sustainable development of groundwater resources. In this work, the main issues related to groundwater management have been identified from the stake-holder’s perspective in the following four representative water-stressed Mediterranean areas: the coastal aquifer of Comacchio (Italy), the Alto Guadalentín aquifer (Spain), the alluvial aquifer of the Gediz River basin (Turkey), and the Azraq aquifer (Azraq Wetland Reserve, Jordan). This has been achieved by designing a methodology to involve and engage a representative set of stakeholders, including a questionnaire to learn their point of view concerning the current management of aquifer systems and their experience with the already available tools for groundwater resource manage-ment, such as monitoring networks and numerical models. The outcome of the survey has allowed us to identify both particular and common challenges among the four study sites and among the various groups of stakeholders. This information provides valuable insights to improve the transfer of scientific knowledge from the research centers to the authorities managing the groundwater resources and it will help to plan more effective research activities on aquifer management. The proposed methodology could be applied in other aquifers facing similar problems

    Comparison of different production processes for bioethanol

    No full text
    WOS: 000076728100006In this study, ethanol was produced with the microorganism Saccharomyces cerevisiae by using sucrose as a substrate. Batch processes were tested by using the same substrate, microorganism and medium composition. Saccharomyces cerevisiae, used in the free form in the first group of experiments, was immobilized by different methods. In the second group of experiments agar, sponge and a natural material called luffa cylindrica fiber were used as support materials. The batch processes with free and immobilized microorganisms were compared with respect to efficiency and yield

    Electronic excitations in complex molecular environments:Many-body Green's functions theory in votca-XTP

    No full text
    \u3cp\u3eMany-body Green's functions theory within the GW approximation and the Bethe-Salpeter Equation (BSE) is implemented in the open-source VOTCA-XTP software, aiming at the calculation of electronically excited states in complex molecular environments. Based on Gaussian-type atomic orbitals and making use of resolution of identity techniques, the code is designed specifically for nonperiodic systems. Application to a small molecule reference set successfully validates the methodology and its implementation for a variety of excitation types covering an energy range from 2 to 8 eV in single molecules. Further, embedding each GW-BSE calculation into an atomistically resolved surrounding, typically obtained from Molecular Dynamics, accounts for effects originating from local fields and polarization. Using aqueous DNA as a prototypical system, different levels of electrostatic coupling between the regions in this GW-BSE/MM setup are demonstrated. Particular attention is paid to charge-transfer (CT) excitations in adenine base pairs. It is found that their energy is extremely sensitive to the specific environment and to polarization effects. The calculated redshift of the CT excitation energy compared to a nucelobase dimer treated in vacuum is of the order of 1 eV, which matches expectations from experimental data. Predicted lowest CT energies are below that of a single nucleobase excitation, indicating the possibility of an initial (fast) decay of such an UV excited state into a binucleobase CT exciton. The results show that VOTCA-XTP's GW-BSE/MM is a powerful tool to study a wide range of types of electronic excitations in complex molecular environments.\u3c/p\u3

    Excited-state electronic structure of molecules using many-body Green's functions: Quasiparticles and electron-hole excitations with VOTCA-XTP

    No full text
    We present the open-source VOTCA-XTP software for the calculation of the excited-state electronic structure of molecules using many-body Green's function theory in the GW approximation with the Bethe-Salpeter equation (BSE). This work provides a summary of the underlying theory and discusses the details of its implementation based on Gaussian orbitals, including resolution-of-identity techniques and different approaches to the frequency integration of the self-energy or acceleration by offloading compute-intensive matrix operations using graphics processing units in a hybrid OpenMP/Cuda scheme. A distinctive feature of VOTCA-XTP is the capability to couple the calculation of electronic excitations to a classical polarizable environment on an atomistic level in a coupled quantum- A nd molecular-mechanics (QM/MM) scheme, where a complex morphology can be imported from Molecular Dynamics simulations. The capabilities and limitations of the GW-BSE implementation are illustrated with two examples. First, we study the dependence of optically active electron-hole excitations in a series of diketopyrrolopyrrole-based oligomers on molecular-architecture modifications and the number of repeat units. Second, we use the GW-BSE/MM setup to investigate the effect of polarization on localized and intermolecular charge-transfer excited states in morphologies of low-donor content rubrene-fullerene mixtures. These showcases demonstrate that our implementation currently allows us to treat systems with up to 2500 basis functions on regular shared-memory workstations, providing accurate descriptions of quasiparticle and coupled electron-hole excited states of various characters on an equal footing
    corecore