32,996 research outputs found

    A radio-paging receiver architecture and demodulator

    Get PDF
    Imperial Users onl

    Should Exact Index Numbers Have Standard Errors? Theory and Application to Asian Growth

    Get PDF
    In this paper we derive the standard error of a price index when both prices and tastes or technology are treated as stochastic. Changing tastes or technology are a reason for the weights in the price index to be treated as stochastic, which can interact with the stochastic prices themselves. We derive results for the constant elasticity of substitution expenditure function (with Sato-Vartia price index), and also the translog function (with T””rnqvist price index), which proves to be more general and easier to implement. In our application to Asian growth, we construct standard errors on the total factor productivity (TFP) estimates of Hsieh (2002) for Singapore. We find that TFP growth is insignificantly different from zero in any year, but cumulative TFP over fifteen years is indeed positive.

    Ribosome recycling induces optimal translation rate at low ribosomal availability

    Get PDF
    Funding statement The authors thank BBSRC (BB/F00513/X1, BB/I020926/1 and DTG) and SULSA for funding. Acknowledgement The authors thank R. Allen, L. Ciandrini, B. Gorgoni and P. Greulich for very helpful discussions and careful reading of the manuscript.Peer reviewedPublisher PD

    Radiative Properties of the Stueckelberg Mechanism

    Full text link
    We examine the mechanism for generating a mass for a U(1) vector field introduced by Stueckelberg. First, it is shown that renormalization of the vector mass is identical to the renormalization of the vector field on account of gauge invariance. We then consider how the vector mass affects the effective potential in scalar quantum electrodynamics at one-loop order. The possibility of extending this mechanism to couple, in a gauge invariant way, a charged vector field to the photon is discussed.Comment: 8 pages, new Introduction, added Reference

    Extraordinarily high leaf selenium to sulfur ratios define ‘se-accumulator’ plants

    Get PDF
    Background and Aims: Selenium (Se) and sulfur (S) exhibit similar chemical properties. In flowering plants (angiosperms) selenate and sulfate are acquired and assimilated by common transport and metabolic pathways. It is hypothesized that most angiosperm species show little or no discrimination in the accumulation of Se and S in leaves when their roots are supplied a mixture of selenate and sulfate, but some, termed Se-accumulator plants, selectively accumulate Se in preference to S under these conditions. Methods: This paper surveys Se and S accumulation in leaves of 39 angiosperm species, chosen to represent the range of plant Se accumulation phenotypes, grown hydroponically under identical conditions. Results: The data show that, when supplied a mixture of selenate and sulfate: (1) plant species differ in both their leaf Se ([Se]leaf) and leaf S ([S]leaf) concentrations; (2) most angiosperms show little discrimination for the accumulation of Se and S in their leaves and, in non-accumulator plants, [Se]leaf and [S]leaf are highly correlated; (3) [Se]leaf in Se-accumulator plants is significantly greater than in other angiosperms, but [S]leaf, although high, is within the range expected for angiosperms in general; and (4) the Se/S quotient in leaves of Se-accumulator plants is significantly higher than in leaves of other angiosperms. Conclusion: The traits of extraordinarily high [Se]leaf and leaf Se/S quotients define the distinct elemental composition of Se-accumulator plants

    The relaxation of OH (v = 1) and OD (v = 1) by H2O and D2O at temperatures from 251 to 390 K

    Get PDF
    We report rate coefficients for the relaxation of OH(v = 1) and OD(v = 1) by H2O and D2O as a function of temperature between 251 and 390 K. All four rate coefficients exhibit a negative dependence on temperature. In Arrhenius form, the rate coefficients for relaxation (in units of 10–12 cm3 molecule–1 s–1) can be expressed as: for OH(v = 1) + H2O between 263 and 390 K: k = (2.4 ± 0.9) exp((460 ± 115)/T); for OH(v = 1) + D2O between 256 and 371 K: k = (0.49 ± 0.16) exp((610 ± 90)/T); for OD(v = 1) + H2O between 251 and 371 K: k = (0.92 ± 0.16) exp((485 ± 48)/T); for OD(v = 1) + D2O between 253 and 366 K: k = (2.57 ± 0.09) exp((342 ± 10)/T). Rate coefficients at (297 ± 1 K) are also reported for the relaxation of OH(v = 2) by D2O and the relaxation of OD(v = 2) by H2O and D2O. The results are discussed in terms of a mechanism involving the formation of hydrogen-bonded complexes in which intramolecular vibrational energy redistribution can occur at rates competitive with re-dissociation to the initial collision partners in their original vibrational states. New ab initio calculations on the H2O–HO system have been performed which, inter alia, yield vibrational frequencies for all four complexes: H2O–HO, D2O–HO, H2O–DO and D2O–DO. These data are then employed, adapting a formalism due to Troe (J. Troe, J. Chem. Phys., 1977, 66, 4758), in order to estimate the rates of intramolecular energy transfer from the OH (OD) vibration to other modes in the complexes in order to explain the measured relaxation rates—assuming that relaxation proceeds via the hydrogen-bonded complexes
    corecore