11,381 research outputs found

    Self-Similar Graphs

    Full text link
    For any graph GG on nn vertices and for any {\em symmetric} subgraph JJ of Kn,nK_{n,n}, we construct an infinite sequence of graphs based on the pair (G,J)(G,J). The First graph in the sequence is GG, then at each stage replacing every vertex of the previous graph by a copy of GG and every edge of the previous graph by a copy of JJ the new graph is constructed. We call these graphs {\em self-similar} graphs. We are interested in delineating those pairs (G,J)(G,J) for which the chromatic numbers of the graphs in the sequence are bounded. Here we have some partial results. When GG is a complete graph and JJ is a special matching we show that every graph in the resulting sequence is an {\em expander} graph.Comment: 13 pages, 1 tabl

    The Formation of the First Stars II. Radiative Feedback Processes and Implications for the Initial Mass Function

    Full text link
    We consider the radiative feedback processes that operate during the formation of the first stars, including the photodissociation of H_2, Ly-alpha radiation pressure, formation and expansion of an HII region, and disk photoevaporation. These processes may inhibit continued accretion once the stellar mass has reached a critical value, and we evaluate this mass separately for each process. Photodissociation of H_2 in the local dark matter minihalo occurs relatively early in the growth of the protostar, but we argue this does not affect subsequent accretion since by this time the depth of the potential is large enough for accretion to be mediated by atomic cooling. However, neighboring starless minihalos can be affected. Ionization creates an HII region in the infalling envelope above and below the accretion disk. Ly-alpha radiation pressure acting at the boundary of the HII region is effective at reversing infall from narrow polar directions when the star reaches ~20-30Msun, but cannot prevent infall from other directions. Expansion of the HII region beyond the gravitational escape radius for ionized gas occurs at masses ~50-100Msun, depending on the accretion rate and angular momentum of the inflow. However, again, accretion from the equatorial regions can continue since the neutral accretion disk has a finite thickness and shields a substantial fraction of the accretion envelope from direct ionizing flux. At higher stellar masses, ~140Msun in the fiducial case, the combination of declining accretion rates and increasing photoevaporation-driven mass loss from the disk act to effectively halt the increase in the protostellar mass. We identify this process as the mechanism that terminates the growth of Population III stars... (abridged)Comment: 31 pages, including 10 figures, accepted to Ap

    Statistics of Core Lifetimes in Numerical Simulations of Turbulent, Magnetically Supercritical Molecular Clouds

    Full text link
    We present measurements of the mean dense core lifetimes in numerical simulations of magnetically supercritical, turbulent, isothermal molecular clouds, in order to compare with observational determinations. "Prestellar" lifetimes (given as a function of the mean density within the cores, which in turn is determined by the density threshold n_thr used to define them) are consistent with observationally reported values, ranging from a few to several free-fall times. We also present estimates of the fraction of cores in the "prestellar", "stellar'', and "failed" (those cores that redisperse back into the environment) stages as a function of n_thr. The number ratios are measured indirectly in the simulations due to their resolution limitations. Our approach contains one free parameter, the lifetime of a protostellar object t_yso (Class 0 + Class I stages), which is outside the realm of the simulations. Assuming a value t_yso = 0.46 Myr, we obtain number ratios of starless to stellar cores ranging from 4-5 at n_thr = 1.5 x 10^4 cm^-3 to 1 at n_thr = 1.2 x 10^5 cm^-3, again in good agreement with observational determinations. We also find that the mass in the failed cores is comparable to that in stellar cores at n_thr = 1.5 x 10^4 cm^-3, but becomes negligible at n_thr = 1.2 x 10^5 cm^-3, in agreement with recent observational suggestions that at the latter densities the cores are in general gravitationally dominated. We conclude by noting that the timescale for core contraction and collapse is virtually the same in the subcritical, ambipolar diffusion-mediated model of star formation, in the model of star formation in turbulent supercritical clouds, and in a model intermediate between the previous two, for currently accepted values of the clouds' magnetic criticality.Comment: 25 pages, 8 figures, ApJ accepted. Fig.1 animation is at http://www.astrosmo.unam.mx/~e.vazquez/turbulence/movies/Galvan_etal07/Galvan_etal07.htm

    Dilute gas of ultracold two-level atoms inside a cavity; generalized Dicke model

    Full text link
    We consider a gas of ultracold two-level atoms confined in a cavity, taking into account for atomic center-of-mass motion and cavity mode variations. We use the generalized Dicke model, and analyze separately the cases of a Gaussian, and a standing wave mode shape. Owing to the interplay between external motional energies of the atoms and internal atomic and field energies, the phase-diagrams exhibit novel features not encountered in the standard Dicke model, such as the existence of first and second order phase transitions between normal and superradiant phases. Due to the quantum description of atomic motion, internal and external atomic degrees of freedom are highly correlated leading to modified normal and superradiant phases.Comment: 10 pages, 7 figure

    Turbulent Cooling Flows in Molecular Clouds

    Get PDF
    We propose that inward, subsonic flows arise from the local dissipation of turbulent motions in molecular clouds. Such "turbulent cooling flows" may account for recent observations of spatially extended inward motions towards dense cores. These pressure-driven flows may arise from various types of turbulence and dissipation mechanisms. For the example of MHD waves and turbulence damped by ion-neutral friction, sustained cooling flow requires that the outer gas be sufficiently turbulent, that the inner gas have marginal field-neutral coupling, and that this coupling decrease sufficiently rapidly with increasing density. These conditions are most likely met at the transition between outer regions ionized primarily by UV photons and inner regions ionized primarily by cosmic rays. If so, turbulent cooling flows can help form dense cores, with speeds faster than expected for ambipolar diffusion. Such motions could reduce the time needed for dense core formation and could precede and enhance the motions of star-forming gravitational infall.Comment: To appear ApJL, Nov.10, 4 ApJ style pages, Postscrip

    On the rotating wave approximation in the adiabatic limit

    Full text link
    I revisit a longstanding question in quantum optics; When is the rotating wave approximation justified? In terms of the Jaynes-Cummings and Rabi models I demonstrate that the approximation in general breaks down in the adiabatic limit regardless of system parameters. This is explicitly shown by comparing Berry phases of the two models, where it is found that this geometrical phase is strictly zero in the Rabi model contrary to the non-trivial Berry phase of the Jaynes-Cummings model. The source of this surprising result is traced back to different topologies in the two models.Comment: 8 pages, 3 figure

    Formation Scenario for Wide and Close Binary Systems

    Full text link
    Fragmentation and binary formation processes are studied using three-dimensional resistive MHD nested grid simulations. Starting with a Bonnor-Ebert isothermal cloud rotating in a uniform magnetic field, we calculate the cloud evolution from the molecular cloud core (n=10^4 cm^-3) to the stellar core (n \simeq 10^22 cm^-3). We calculated 147 models with different initial magnetic, rotational, and thermal energies, and the amplitudes of the non-axisymmetric perturbation. In a collapsing cloud, fragmentation is mainly controlled by the initial ratio of the rotational to the magnetic energy, regardless of the initial thermal energy and amplitude of the non-axisymmetric perturbation. When the clouds have large rotational energies in relation to magnetic energies, fragmentation occurs in the low-density evolution phase (10^12 cm^-3 < n < 10^15 cm^-3) with separations of 3-300 AU. Fragments that appeared in this phase are expected to evolve into wide binary systems. On the other hand, fragmentation does not occur in the low-density evolution phase, when initial clouds have large magnetic energies in relation to the rotational energies. In these clouds, fragmentation only occurs in the high-density evolution phase (n > 10^17 cm^-3) after the clouds experience significant reduction of the magnetic field owing to Ohmic dissipation in the period of 10^12 cm^-3 < n < 10^15 cm^-3. Fragments appearing in this phase have separations of < 0.3 AU, and are expected to evolve into close binary systems. As a result, we found two typical fragmentation epochs, which cause different stellar separations. Although these typical separations are disturbed in the subsequent gas accretion phase, we might be able to observe two peaks of binary separations in extremely young stellar groups.Comment: 45 pages,12 figures, Submitted to ApJ, For high resolution figures see http://www2.scphys.kyoto-u.ac.jp/~machidam/protostar/proto/main-astroph.pd
    • 

    corecore