115 research outputs found

    Travelling solitons in the parametrically driven nonlinear Schroedinger equation

    Full text link
    We show that the parametrically driven nonlinear Schroedinger equation has wide classes of travelling soliton solutions, some of which are stable. For small driving strengths nonpropogating and moving solitons co-exist while strongly forced solitons can only be stably when moving sufficiently fast.Comment: The paper is available as the JINR preprint E17-2000-147(Dubna, Russia) and the preprint of the Max-Planck Institute for the Complex Systems mpipks/0009011, Dresden, Germany. It was submitted to Physical Review

    Two and three-dimensional oscillons in nonlinear Faraday resonance

    Full text link
    We study 2D and 3D localised oscillating patterns in a simple model system exhibiting nonlinear Faraday resonance. The corresponding amplitude equation is shown to have exact soliton solutions which are found to be always unstable in 3D. On the contrary, the 2D solitons are shown to be stable in a certain parameter range; hence the damping and parametric driving are capable of suppressing the nonlinear blowup and dispersive decay of solitons in two dimensions. The negative feedback loop occurs via the enslaving of the soliton's phase, coupled to the driver, to its amplitude and width.Comment: 4 pages; 1 figur

    Multistable Pulse-like Solutions in a Parametrically Driven Ginzburg-Landau Equation

    Full text link
    It is well known that pulse-like solutions of the cubic complex Ginzburg-Landau equation are unstable but can be stabilised by the addition of quintic terms. In this paper we explore an alternative mechanism where the role of the stabilising agent is played by the parametric driver. Our analysis is based on the numerical continuation of solutions in one of the parameters of the Ginzburg-Landau equation (the diffusion coefficient cc), starting from the nonlinear Schr\"odinger limit (for which c=0c=0). The continuation generates, recursively, a sequence of coexisting stable solutions with increasing number of humps. The sequence "converges" to a long pulse which can be interpreted as a bound state of two fronts with opposite polarities.Comment: 13 pages, 6 figures; to appear in PR

    Complexes of stationary domain walls in the resonantly forced Ginsburg-Landau equation

    Full text link
    The parametrically driven Ginsburg-Landau equation has well-known stationary solutions -- the so-called Bloch and Neel, or Ising, walls. In this paper, we construct an explicit stationary solution describing a bound state of two walls. We also demonstrate that stationary complexes of more than two walls do not exist.Comment: 10 pages, 2 figures, to appear in Physical Review

    Noncoaxial multivortices in the complex sine-Gordon theory on the plane

    Full text link
    We construct explicit multivortex solutions for the complex sine-Gordon equation (the Lund-Regge model) in two Euclidean dimensions. Unlike the previously found (coaxial) multivortices, the new solutions comprise nn single vortices placed at arbitrary positions (but confined within a finite part of the plane.) All multivortices, including the single vortex, have an infinite number of parameters. We also show that, in contrast to the coaxial complex sine-Gordon multivortices, the axially-symmetric solutions of the Ginzburg-Landau model (the stationary Gross-Pitaevskii equation) {\it do not} belong to a broader family of noncoaxial multivortex configurations.Comment: 40 pages, 7 figures in colou

    Fragmentation of Nuclei at Intermediate and High Energies in Modified Cascade Model

    Get PDF
    The process of nuclear multifragmentation has been implemented, together with evaporation and fission channels of the disintegration of excited remnants in nucleus-nucleus collisions using percolation theory and the intranuclear cascade model. Colliding nuclei are treated as face--centered--cubic lattices with nucleons occupying the nodes of the lattice. The site--bond percolation model is used. The code can be applied for calculation of the fragmentation of nuclei in spallation and multifragmentation reactions.Comment: 19 pages, 10 figure

    Low-dimensional Bose liquids: beyond the Gross-Pitaevskii approximation

    Full text link
    The Gross-Pitaevskii approximation is a long-wavelength theory widely used to describe a variety of properties of dilute Bose condensates, in particular trapped alkali gases. We point out that for short-ranged repulsive interactions this theory fails in dimensions d less than or equal to 2, and we propose the appropriate low-dimensional modifications. For d=1 we analyze density profiles in confining potentials, superfluid properties, solitons, and self-similar solutions.Comment: 4 pages, 3 figure

    Cuspons, peakons and regular gap solitons between three dispersion curves

    Full text link
    A general wave model with the cubic nonlinearity is introduced to describe a situation when the linear dispersion relation has three branches, which would intersect in the absence of linear couplings between the three waves. Actually, the system contains two waves with a strong linear coupling between them, to which a third wave is then coupled. This model has two gaps in its linear spectrum. Realizations of this model can be made in terms of temporal or spatial evolution of optical fields in, respectively, a planar waveguide or a bulk-layered medium resembling a photonic-crystal fiber. Another physical system described by the same model is a set of three internal wave modes in a density-stratified fluid. A nonlinear analysis is performed for solitons which have zero velocity in the reference frame in which the group velocity of the third wave vanishes. Disregarding the self-phase modulation (SPM) term in the equation for the third wave, we find two coexisting families of solitons: regular ones, which may be regarded as a smooth deformation of the usual gap solitons in a two-wave system, and cuspons with a singularity in the first derivative at their center. Even in the limit when the linear coupling of the third wave to the first two vanishes, the soliton family remains drastically different from that in the linearly uncoupled system; in this limit, regular solitons whose amplitude exceeds a certain critical value are replaced by peakons. While the regular solitons, cuspons, and peakons are found in an exact analytical form, their stability is tested numerically, which shows that they all may be stable. If the SPM terms are retained, we find that there again coexist two different families of generic stable soliton solutions, namely, regular ones and peakons.Comment: a latex file with the text and 10 pdf files with figures. Physical Review E, in pres

    Total Cross Section, Inelasticity and Multiplicity Distributions in Proton -- Proton Collisions

    Full text link
    Multiparticle production in high energy proton -- proton collisions has been analysed in the frame of Strongly Correlated Quark Model (SCQM) of the hadron structure elaborated by the author. It is shown that inelasticity decreases at high energies and this effect together with the total cross section growth and the increasing with collision energy the masses of intermediate clusters result in the violation of KNO -- scaling.Comment: 21 pages, 11 figures, submitted to Yad. Fisik

    A system of ODEs for a Perturbation of a Minimal Mass Soliton

    Full text link
    We study soliton solutions to a nonlinear Schrodinger equation with a saturated nonlinearity. Such nonlinearities are known to possess minimal mass soliton solutions. We consider a small perturbation of a minimal mass soliton, and identify a system of ODEs similar to those from Comech and Pelinovsky (2003), which model the behavior of the perturbation for short times. We then provide numerical evidence that under this system of ODEs there are two possible dynamical outcomes, which is in accord with the conclusions of Pelinovsky, Afanasjev, and Kivshar (1996). For initial data which supports a soliton structure, a generic initial perturbation oscillates around the stable family of solitons. For initial data which is expected to disperse, the finite dimensional dynamics follow the unstable portion of the soliton curve.Comment: Minor edit
    • …
    corecore