2,628 research outputs found
Acoustic and optical phonon dynamics from femtosecond time-resolved optical spectroscopy of superconducting iron pnictide Ca(Fe_0.944Co_0.056)_2As_2
We report temperature evolution of coherently excited acoustic and optical
phonon dynamics in superconducting iron pnictide single crystal
Ca(Fe_0.944Co_0.056)_2As_2 across the spin density wave transition at T_SDW ~
85 K and superconducting transition at T_SC ~20 K. Strain pulse propagation
model applied to the generation of the acoustic phonons yields the temperature
dependence of the optical constants, and longitudinal and transverse sound
velocities in the temperature range of 3.1 K to 300 K. The frequency and
dephasing times of the phonons show anomalous temperature dependence below T_SC
indicating a coupling of these low energy excitations with the Cooper-pair
quasiparticles. A maximum in the amplitude of the acoustic modes at T ~ 170 is
seen, attributed to spin fluctuations and strong spin-lattice coupling before
T_SDW.Comment: 6 pages, 4 figures (revised manuscript
Ultrafast quasiparticle dynamics in superconducting iron pnictide CaFe1.89Co0.11As2
Nonequilibrium quasiparticle relaxation dynamics is reported in
superconducting CaFe1.89Co0.11As2 single crystal using femtosecond
time-resolved pump-probe spectroscopy. The carrier dynamics reflects a
three-channel decay of laser deposited energy with characteristic time scales
varying from few hundreds of femtoseconds to order of few nanoseconds where the
amplitudes and time-constants of the individual electronic relaxation
components show significant changes in the vicinity of the spin density wave
(T_SDW ~ 85 K) and superconducting (T_SC ~ 20 K) phase transition temperatures.
The quasiparticles dynamics in the superconducting state reveals a charge gap
with reduced gap value of 2_0/k_BT_SC ~ 1.8. We have determined the
electron-phonon coupling constant \lemda to be ~ 0.14 from the temperature
dependent relaxation time in the normal state, a value close to those reported
for other types of pnictides. From the peculiar temperature-dependence of the
carrier dynamics in the intermediate temperature region between the
superconducting and spin density wave phase transitions, we infer a temperature
scale where the charge gap associated with the spin ordered phase is maximum
and closes on either side while approaching the two phase transition
temperatures.Comment: 6 pages, 4 figures (revised manuscript);
http://dx.doi.org/10.1016/j.ssc.2013.02.00
Spin reorientation in Na-doped BaFeAs studied by neutron diffraction
We have studied the magnetic ordering in Na doped BaFeAs by
unpolarized and polarized neutron diffraction using single crystals. Unlike
previously studied FeAs-based compounds that magnetically order,
BaNaFeAs exhibits two successive magnetic transitions: For
x=0.35 upon cooling magnetic order occurs at 70\ K with in-plane magnetic
moments being arranged as in pure or Ni, Co and K-doped BaFeAs samples.
At a temperature of 46\ K a second phase transition occurs, which the
single-crystal neutron diffraction experiments can unambiguously identify as a
spin reorientation. At low temperatures, the ordered magnetic moments in
BaNaFeAs point along the direction. Magnetic
correlations in these materials cannot be considered as Ising like, and
spin-orbit coupling must be included in a quantitative theory.Comment: 5 pages, 4 figure
Simulation of Green Water Loading Using the Navier-Stokes Equations
Simulating viscous flows with a free surface causes special difficulties, since its position will change continuously. Therefore, besides solving the Navier-Stokes equations, the position of the free surface must be determined every time step. In the present method, the Navier-Stokes equations are solved on a three-dimensional Cartesian grid. A Volume-of-Fluid function is used for the position of the fluid. Since the method is able to handle arbitrary forms of the geometry, many types of industrial flow problems can be simulated. In this paper the problem of green water loading on the foredeck of a ship is discussed and a comparison is made with experimental results. Waterheights, pressures and water contours are produced and compared with model tests. Also forces on different structures placed on the deck are compared and analyzed
Poly[[tetrakis(μ2-pyrazine N,N′-dioxide-κ2 O:O′)holmium(III)] tris(perchlorate)]
The title three-dimensional coordination network, {[Ho(C4H4N2O2)4](ClO4)3}n, is isostructural to that of other lanthanides. The Ho+3 cation lies on a fourfold roto-inversion axis. It is coordinated in a distorted square anti-prismatic fashion by eight O atoms from bridging pyrazine N,N′-dioxide ligands. There are two unique pyrazine N,N′-dioxide ligands. One ring is located around an inversion center, and there is a a twofold rotation axis at the center of the other ring. There are also two unique perchlorate anions. One is centered on a twofold rotation axis and the other on a fourfold roto-inversion axis. The perchlorate anions are located in channels that run perpendicular to (001) (110) and interact with the coordination network through C—H⋯O hydrogen bonds
- …