108 research outputs found
Monthly forecasting of French GDP: A revised version of the OPTIM model.
This paper presents a revised version of the model OPTIM, proposed by Irac and SĂ©dillot (2002), used at the Banque de France in order to predict French GDP quarterly growth rate, for the current and next quarters. The model is designed to be used on a monthly basis by integrating monthly economic information through bridge models, for both supply and demand sides of GDP. For each GDP component, bridge equations are specified by using a general-to-specific approach implemented in an automated way by Hoover and Perez (1999) and improved by Krolzig and Hendry (2001). This approach allows to select explanatory variables among a large data set of hard and soft data. The final choice of equations relies on a recursive forecast study, which also helps to assess the forecasting performance of the revised OPTIM model in the prediction of aggregated GDP. This study is based on pseudo real-time forecasts taking publication lags into account. It turns out that the model outperforms benchmark models.GDP forecasting ; Bridge models ; General-to-specific approach
OPTIM : un outil de prévision trimestrielle du PIB de la France.
Le modĂšle OPTIM permet de prĂ©voir, chaque mois, les taux de croissance du PIB de la France et de ses principales composantes, pour le trimestre en cours et le trimestre suivant. Ce modĂšle mobilise un large Ă©ventail de donnĂ©es macro-Ă©conomiques mensuelles et de donnĂ©es dâenquĂȘte, sĂ©lectionnĂ©es par une procĂ©dure statistique automatique.PrĂ©vision, taux de croissance du PIB, modĂšle dâĂ©talonnage, approche âgeneral-to-specificâ.
Absorption spectrum of a weakly n-doped semiconductor quantum well
We calculate, as a function of temperature and conduction band electron
density, the optical absorption of a weakly n-doped, idealized semiconductor
quantum well. In particular, we focus on the absorption band due to the
formation of a charged exciton. We conceptualize the charged exciton as an
itinerant excitation intimately linked to the dynamical response of itinerant
conduction band electrons to the appearance of the photo-generated valence band
hole. Numerical results for the absorption in the vicinity of the exciton line
are presented and the spectral weights associated with, respectively, the
charged exciton band and the exciton line are analyzed in detail. We find, in
qualitative agreement with experimental data, that the spectral weight of the
charged exciton grows with increasing conduction band electron density and/or
decreasing temperature at the expense of the exciton.Comment: 5 pages, 4 figure
How do tsetse recognise their hosts? The role of shape in the responses of tsetse (Glossina fuscipes and G. palpalis) to artificial hosts
Palpalis-group tsetse, particularly the subspecies of Glossina palpalis and G. fuscipes, are the most important transmitters of human African trypanomiasis (HAT), transmitting .95% of cases. Traps and insecticide-treated targets are used to control tsetse but more cost-effective baits might be developed through a better understanding of the flyâs host-seeking behaviour.Electrocuting grids were used to assess the numbers of G. palpalis palpalis and G. fuscipes quanzensis attracted to and landing on square or oblong targets of black cloth varying in size from 0.01 m2 to 1.0 m2. For both species, increasing the size of a square target from 0.01 m2 (dimensions = 0.1 x 0.1 m) to 1.0 m2 (1.0 x 1.0 m) increased the catch ,4x however the numbers of tsetse killed per unit area of target declined with target size suggesting that the most cost efficient targets are not the largest. For G. f. quanzensis, horizontal oblongs, (1 m wide x 0.5 m high) caught, 1.8x more tsetse than vertical ones (0.5 m wide x 1.0 m high) but the opposite applied for G. p. palpalis. Shape preference was consistent over the range of target sizes. For G. p. palpalis square targets caught as many tsetse as the oblong; while the evidence is less strong the same
appears to apply to G. f. quanzensis. The results suggest that targets used to control G. p. palpalis and G. f. quanzensis should be square, and that the most cost-effective designs, as judged by the numbers of tsetse caught per area of target, are likely to be in the region of 0.25 x 0.25 m2. The preference of G. p. palpalis for vertical oblongs is unique amongst tsetse species, and it is suggested that this response might be related to its anthropophagic behaviour and hence importance as a vector of HAT
Population structure of the malaria vector Anopheles moucheti in the equatorial forest region of Africa
<p>Abstract</p> <p>Background</p> <p><it>Anopheles moucheti </it>is a major malaria vector in forested areas of Africa. However, despite its important epidemiological role, it remains poorly known and insufficiently studied. Here, levels of genetic differentiation were estimated between different <it>A. moucheti </it>populations sampled throughout its distribution range in Central Africa.</p> <p>Methods</p> <p>Polymorphism at ten microsatellite markers was compared in mosquitoes sampled in Cameroon, the Democratic Republic of Congo and an island on Lake Victoria in Uganda. Microsatellite data were used to estimate genetic diversity within populations, their relative long-term effective population size, and the level of genetic differentiation between them.</p> <p>Results</p> <p>All specimens collected in Tsakalakuku (Democratic Republic of Congo) were identified as <it>A. m. bervoetsi </it>while other samples consisted of <it>A. m. moucheti</it>. Successful amplification was obtained at all microsatellite loci within all <it>A. m. moucheti </it>samples while only six loci amplified in <it>A. m. bervoetsi</it>. Allelic richness and heterozygosity were high for all populations except the island population of Uganda and <it>A. m. bervoetsi</it>. High levels of genetic differentiation were recorded between <it>A. m. bervoetsi </it>and each <it>A. m. moucheti </it>sample as well as between the island population of <it>A. m. moucheti </it>and mainland populations. Significant isolation by distance was evidenced between mainland populations.</p> <p>Conclusion</p> <p>High levels of genetic differentiation supports complete speciation of <it>A. m. bervoetsi </it>which should henceforth be recognized as a full species and named <it>A. bervoetsi</it>. Isolation by distance is the main force driving differentiation between mainland populations of <it>A. m. moucheti</it>. Genetically and geographically isolated populations exist on Lake Victoria islands, which might serve as relevant field sites for evaluation of innovative vector control strategies.</p
Population genetic structure of the malaria vector Anopheles nili in sub-Saharan Africa
<p>Abstract</p> <p>Background</p> <p><it>Anopheles nili </it>is a widespread efficient vector of human malaria parasites in the humid savannas and forested areas of sub-Saharan Africa. Understanding <it>An. nili </it>population structure and gene flow patterns could be useful for the development of locally-adapted vector control measures.</p> <p>Methods</p> <p>Polymorphism at eleven recently developed microsatelitte markers, and sequence variation in four genes within the 28s rDNA subunit (ITS2 and D3) and mtDNA (COII and ND4) were assessed to explore the level of genetic variability and differentiation among nine populations of <it>An. nili </it>from Senegal, Ivory Coast, Burkina Faso, Nigeria, Cameroon and the Democratic Republic of Congo (DRC).</p> <p>Results</p> <p>All microsatellite loci successfully amplified in all populations, showing high and very similar levels of genetic diversity in populations from West Africa and Cameroon (mean Rs = 8.10-8.88, mean He = 0.805-0.849) and much lower diversity in the Kenge population from DRC (mean Rs = 5.43, mean He = 0.594). Bayesian clustering analysis of microsatellite allelic frequencies revealed two main genetic clusters in the dataset. The first one included only the Kenge population and the second grouped together all other populations. High Fst estimates based on microsatellites (Fst > 0.118, P < 0.001) were observed in all comparisons between Kenge and all other populations. By contrast, low Fst estimates (Fst < 0.022, P < 0.05) were observed between populations within the second cluster. The correlation between genetic and geographic distances was weak and possibly obscured by demographic instability. Sequence variation in mtDNA genes matched these results, whereas low polymorphism in rDNA genes prevented detection of any population substructure at this geographical scale.</p> <p>Conclusion</p> <p>Overall, high genetic homogeneity of the <it>An. nili </it>gene pool was found across its distribution range in West and Central Africa, although demographic events probably resulted in a higher level of genetic isolation in the marginal population of Kenge (DRC). The role of the equatorial forest block as a barrier to gene flow and the implication of such findings for vector control are discussed.</p
Miniband-related 1.4â1.8 ÎŒm luminescence of Ge/Si quantum dot superlattices
The luminescence properties of highly strained, Sb-doped Ge/Si multi-layer heterostructures with incorporated Ge quantum dots (QDs) are studied. Calculations of the electronic band structure and luminescence measurements prove the existence of an electron miniband within the columns of the QDs. Miniband formation results in a conversion of the indirect to a quasi-direct excitons takes place. The optical transitions between electron states within the miniband and hole states within QDs are responsible for an intense luminescence in the 1.4â1.8 ”m range, which is maintained up to room temperature. At 300 K, a light emitting diode based on such Ge/Si QD superlattices demonstrates an external quantum efficiency of 0.04% at a wavelength of 1.55 ”m
- âŠ