5,681 research outputs found
Theory of vortex states in magnetic nanodisks with induced Dzyaloshinskii-Moriya interactions
Vortex states in magnetic nanodisks are essentially affected by
surface/interface induced Dzyaloshinskii-Moriya interactions. Within a
micromagnetic approach we calculate the equilibrium sizes and shape of the
vortices as functions of magnetic field, the material and geometrical
parameters of nanodisks. It was found that the Dzyaloshinskii-Moriya coupling
can considerably increase sizes of vortices with "right" chirality and suppress
vortices with opposite chirality. This allows to form a bistable system of
homochiral vortices as a basic element for storage applications.Comment: 8 pages, 8 figure
Skyrmionic textures in chiral magnets
In non-centrosymmetric magnets the chiral Dzyaloshinskii-Moriya exchange
stabilizes Skyrmion-strings as excitations which may condense into multiply
modulated phases. Such extended Skyrmionic textures are determined by the
stability of the localized "solitonic" Skyrmion cores and their geometrical
incompatibility which frustrates regular space-filling. We present numerically
exact solutions for Skyrmion lattices and formulate basic properties of the
Skyrmionic states.Comment: Conference information: The International Conference on Magnetism
(ICM), Karlsruhe, July 26 - 31, 200
Solutions for real dispersionless Veselov-Novikov hierarchy
We investigate the dispersionless Veselov-Novikov (dVN) equation based on the
framework of dispersionless two-component BKP hierarchy. Symmetry constraints
for real dVN system are considered. It is shown that under symmetry reductions,
the conserved densities are therefore related to the associated Faber
polynomials and can be solved recursively. Moreover, the method of hodograph
transformation as well as the expressions of Faber polynomials are used to find
exact real solutions of the dVN hierarchy.Comment: 14 page
- …
