861 research outputs found

    Local Quantum Measurement and No-Signaling Imply Quantum Correlations

    Get PDF
    We show that, assuming that quantum mechanics holds locally, the finite speed of information is the principle that limits all possible correlations between distant parties to be quantum mechanical as well. Local quantum mechanics means that a Hilbert space is assigned to each party, and then all local positive-operator-valued measurements are (in principle) available; however, the joint system is not necessarily described by a Hilbert space. In particular, we do not assume the tensor product formalism between the joint systems. Our result shows that if any experiment would give nonlocal correlations beyond quantum mechanics, quantum theory would be invalidated even locally.Comment: Published version. 5 pages, 1 figure

    A violation of the uncertainty principle implies a violation of the second law of thermodynamics

    Full text link
    Uncertainty relations state that there exist certain incompatible measurements, to which the outcomes cannot be simultaneously predicted. While the exact incompatibility of quantum measurements dictated by such uncertainty relations can be inferred from the mathematical formalism of quantum theory, the question remains whether there is any more fundamental reason for the uncertainty relations to have this exact form. What, if any, would be the operational consequences if we were able to go beyond any of these uncertainty relations? We give a strong argument that justifies uncertainty relations in quantum theory by showing that violating them implies that it is also possible to violate the second law of thermodynamics. More precisely, we show that violating the uncertainty relations in quantum mechanics leads to a thermodynamic cycle with positive net work gain, which is very unlikely to exist in nature.Comment: 8 pages, revte

    Compressibility of Mixed-State Signals

    Get PDF
    We present a formula that determines the optimal number of qubits per message that allows asymptotically faithful compression of the quantum information carried by an ensemble of mixed states. The set of mixed states determines a decomposition of the Hilbert space into the redundant part and the irreducible part. After removing the redundancy, the optimal compression rate is shown to be given by the von Neumann entropy of the reduced ensemble.Comment: 7 pages, no figur

    Linking a distance measure of entanglement to its convex roof

    Full text link
    An important problem in quantum information theory is the quantification of entanglement in multipartite mixed quantum states. In this work, a connection between the geometric measure of entanglement and a distance measure of entanglement is established. We present a new expression for the geometric measure of entanglement in terms of the maximal fidelity with a separable state. A direct application of this result provides a closed expression for the Bures measure of entanglement of two qubits. We also prove that the number of elements in an optimal decomposition w.r.t. the geometric measure of entanglement is bounded from above by the Caratheodory bound, and we find necessary conditions for the structure of an optimal decomposition.Comment: 11 pages, 4 figure

    The quantum capacity is properly defined without encodings

    Get PDF
    We show that no source encoding is needed in the definition of the capacity of a quantum channel for carrying quantum information. This allows us to use the coherent information maximized over all sources and and block sizes, but not encodings, to bound the quantum capacity. We perform an explicit calculation of this maximum coherent information for the quantum erasure channel and apply the bound in order find the erasure channel's capacity without relying on an unproven assumption as in an earlier paper.Comment: 19 pages revtex with two eps figures. Submitted to Phys. Rev. A. Replaced with revised and simplified version, and improved references, etc. Why can't the last line of the comments field end with a period using this web submission form

    Quantum Copying: Beyond the No-Cloning Theorem

    Get PDF
    We analyze to what extent it is possible to copy arbitrary states of a two-level quantum system. We show that there exists a "universal quantum copying machine", which approximately copies quantum mechanical states in such a way that the quality of its output does not depend on the input. We also examine a machine which combines a unitary transformation with a selective measurement to produce good copies of states in a neighborhood of a particular state. We discuss the problem of measurement of the output states.Comment: RevTex, 26 pages, to appear in Physical Review

    Lossless quantum data compression and variable-length coding

    Full text link
    In order to compress quantum messages without loss of information it is necessary to allow the length of the encoded messages to vary. We develop a general framework for variable-length quantum messages in close analogy to the classical case and show that lossless compression is only possible if the message to be compressed is known to the sender. The lossless compression of an ensemble of messages is bounded from below by its von-Neumann entropy. We show that it is possible to reduce the number of qbits passing through a quantum channel even below the von-Neumann entropy by adding a classical side-channel. We give an explicit communication protocol that realizes lossless and instantaneous quantum data compression and apply it to a simple example. This protocol can be used for both online quantum communication and storage of quantum data.Comment: 16 pages, 5 figure

    Quantum channels with a finite memory

    Full text link
    In this paper we study quantum communication channels with correlated noise effects, i.e., quantum channels with memory. We derive a model for correlated noise channels that includes a channel memory state. We examine the case where the memory is finite, and derive bounds on the classical and quantum capacities. For the entanglement-assisted and unassisted classical capacities it is shown that these bounds are attainable for certain classes of channel. Also, we show that the structure of any finite memory state is unimportant in the asymptotic limit, and specifically, for a perfect finite-memory channel where no nformation is lost to the environment, achieving the upper bound implies that the channel is asymptotically noiseless.Comment: 7 Pages, RevTex, Jrnl versio

    The Holevo bound and Landauer's principle

    Get PDF
    Landauer's principle states that the erasure of information generates a corresponding amount of entropy in the environment. We show that Landauer's principle provides an intuitive basis for Holevo bound on the classical capacity of a quantum channel.Comment: to appear in Physics Letters

    Bostonia. Volume 14

    Full text link
    Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
    corecore