7 research outputs found
On the propagation of an optical wave in a photorefractive medium
The aim of this paper is first to review the derivation of a model describing
the propagation of an optical wave in a photorefractive medium and to present
various mathematical results on this model: Cauchy problem, solitary waves
From Bloch model to the rate equations II: the case of almost degenerate energy levels
Bloch equations give a quantum description of the coupling between an atom
and a driving electric force. In this article, we address the asymptotics of
these equations for high frequency electric fields, in a weakly coupled regime.
We prove the convergence towards rate equations (i.e. linear Boltzmann
equations, describing the transitions between energy levels of the atom). We
give an explicit form for the transition rates. This has already been performed
in [BFCD03] in the case when the energy levels are fixed, and for different
classes of electric fields: quasi or almost periodic, KBM, or with continuous
spectrum. Here, we extend the study to the case when energy levels are possibly
almost degenerate. However, we need to restrict to quasiperiodic forcings. The
techniques used stem from manipulations on the density matrix and the averaging
theory for ordinary differential equations. Possibly perturbed small divisor
estimates play a key role in the analysis. In the case of a finite number of
energy levels, we also precisely analyze the initial time-layer in the rate
aquation, as well as the long-time convergence towards equilibrium. We give
hints and counterexamples in the infinite dimensional case