1,353 research outputs found
Multidimensional optical fractionation with holographic verification
The trajectories of colloidal particles driven through a periodic potential
energy landscape can become kinetically locked in to directions dictated by the
landscape's symmetries. When the landscape is realized with forces exerted by a
structured light field, the path a given particle follows has been predicted to
depend exquisitely sensitively on such properties as the particle's size and
refractive index These predictions, however, have not been tested
experimentally. Here, we describe measurements of colloidal silica spheres'
transport through arrays of holographic optical traps that use holographic
video microscopy to track individual spheres' motions in three dimensions and
simultaneously to measure each sphere's radius and refractive index with
part-per-thousand resolution. These measurements confirm previously untested
predictions for the threshold of kinetically locked-in transport, and
demonstrate the ability of optical fractionation to sort colloidal spheres with
part-per-thousand resolution on multiple characteristics simultaneously.Comment: 4 pages, 2 figures. Accepted for publication in Physical Review
Letter
Depolarization volume and correlation length in the homogenization of anisotropic dielectric composites
In conventional approaches to the homogenization of random particulate
composites, both the distribution and size of the component phase particles are
often inadequately taken into account. Commonly, the spatial distributions are
characterized by volume fraction alone, while the electromagnetic response of
each component particle is represented as a vanishingly small depolarization
volume. The strong-permittivity-fluctuation theory (SPFT) provides an
alternative approach to homogenization wherein a comprehensive description of
distributional statistics of the component phases is accommodated. The
bilocally-approximated SPFT is presented here for the anisotropic homogenized
composite which arises from component phases comprising ellipsoidal particles.
The distribution of the component phases is characterized by a two-point
correlation function and its associated correlation length. Each component
phase particle is represented as an ellipsoidal depolarization region of
nonzero volume. The effects of depolarization volume and correlation length are
investigated through considering representative numerical examples. It is
demonstrated that both the spatial extent of the component phase particles and
their spatial distributions are important factors in estimating coherent
scattering losses of the macroscopic field.Comment: Typographical error in eqn. 16 in WRM version is corrected in arxiv
versio
Polarizability and Absorption of Small Conducting Particles in a Time-Varying Electromagnetic Field
We study small conducting particles and thin films in an oscillating
longitudinal electric field. We find the charge, current, and field
distribution in the particle, the polarizability and the electric dipole
absorption. We account for Thomas-Fermi screening by adding a Fick's diffusion
term to Ohm's law. Alternatively, we describe a particle as a dielectric body
with a non-local dielectric constant which is derived in a microscopic
linear-response theory. We show that both approaches are equivalent.Comment: 14 page
Polarized light emission from individual incandescent carbon nanotubes
We fabricate nanoscale lamps which have a filament consisting of a single
multiwalled carbon nanotube. After determining the nanotube geometry with a
transmission electron microscope, we use Joule heating to bring the filament to
incandescence, with peak temperatures in excess of 2000 K. We image the thermal
light in both polarizations simultaneously as a function of wavelength and
input electrical power. The observed degree of polarization is typically of the
order of 75%, a magnitude predicted by a Mie model of the filament that assigns
graphene's optical conductance to each nanotube wall.Comment: 5 pages, 4 figure
Colloidal Electrostatic Interactions Near a Conducting Surface
Charge-stabilized colloidal spheres dispersed in deionized water are supposed
to repel each other. Instead, artifact-corrected video microscopy measurements
reveal an anomalous long-ranged like-charge attraction in the interparticle
pair potential when the spheres are confined to a layer by even a single
charged glass surface. These attractions can be masked by electrostatic
repulsions at low ionic strengths. Coating the bounding surfaces with a
conducting gold layer suppresses the attraction. These observations suggest a
possible mechanism for confinement-induced attractions.Comment: 4 pages, 2 figure
Mie resonances and bonding in photonic crystals
Isolated dielectric spheres support resonant electromagnetic modes which are
analogous to electronic orbitals and, like their electronic counterparts, can
form bonding or anti-bonding interactions between neighbouring spheres. By
irradiating the system with light at the bonding frequency an attractive
interaction is induced between the spheres. We suggest that by judicious
selection of bonding states we can drive a system towards a desired structure,
rather than rely on the structure dictated by gravitational or Van der Waals
forces, the latter deriving from the zero point energy population of a state.Comment: Minor changes in text, of explanatory nature. 6 pages, Latex, 6
figures, accepted by Europhysics Letter
Optical Spectral Singularities and Coherent Perfect Absorption in a Two-Layer Spherical Medium
An optical spectral singularity is a zero-width resonance that corresponds to
lasing at threshold gain. Its time-reversal causes coherent perfect absorption
of light and forms the theoretical basis of antilasing. In this article we
explore optical spectral singularities of a two-layer spherical medium. In
particular, we examine the cases that a gain medium is coated by a thin layer
of high-refractive index glass and a spherical glass covered by a layer of gain
material. In the former case, the coating reduces the minimum radius required
for exciting spectral singularities and gives rise to the formation of clusters
of spectral singularities separated by wide spectral gaps. In the latter case,
the coating leads to a doubling of the number of spectral singularities.Comment: 19 pages, 1 table, 10 figures, accepted for publication in Proc. R.
Soc.
Quantification of optical pulsed-plane-wave-shaping by chiral sculptured thin films
The durations and average speeds of ultrashort optical pulses transmitted
through chiral sculptured thin films (STFs) were calculated using a
finite-difference time-domain algorithm. Chiral STFs are a class of
nanoengineered materials whose microstructure comprises parallel helicoidal
nanowires grown normal to a substrate. The nanowires are 10-300 nm in
diameter and m in length. Durations of transmitted pulses tend to
increase with decreasing (free-space) wavelength of the carrier plane wave,
while average speeds tend to increase with increasing wavelength. An increase
in nonlinearity, as manifested by an intensity-dependent refractive index in
the frequency domain, tends to increase durations of transmitted pulses and
decrease average speeds. The circular Bragg phenomenon exhibited by a chiral
STFs manifests itself in the frequency domain as high reflectivity for normally
incident carrier plane waves whose circular polarization state is matched to
the structural handedness of the film and whose wavelength falls in a range
known as the Bragg regime; films of the opposite structural handedness reflect
such plane waves little. This effect tends to distort the shapes of transmitted
pulses with respect to the incident pulses, and such shaping can cause sharp
changes in some measures of average speed with respect to carrier wavelength. A
local maximum in the variation of one measure of the pulse duration with
respect to wavelength is noted and attributed to the circular Bragg phenomenon.
Several of these effects are explained via frequency-domain arguments. The
presented results serve as a foundation for future theoretical and experimental
studies of optical pulse propagation through causal, nonlinear, nonhomogeneous,
and anisotropic materials.Comment: To appear in Journal of Modern Optic
Casimir interaction between plane and spherical metallic surfaces
We give an exact series expansion of the Casimir force between plane and
spherical metallic surfaces in the non trivial situation where the sphere
radius , the plane-sphere distance and the plasma wavelength
have arbitrary relative values. We then present numerical
evaluation of this expansion for not too small values of . For metallic
nanospheres where and have comparable values, we interpret
our results in terms of a correlation between the effects of geometry beyond
the proximity force approximation (PFA) and of finite reflectivity due to
material properties. We also discuss the interest of our results for the
current Casimir experiments performed with spheres of large radius .Comment: 4 pages, new presentation (highlighting the novelty of the results)
and added references. To appear in Physical Review Letter
An analytical model for the detection of levitated nanoparticles in optomechanics
Interferometric position detection of levitated particles is crucial for the
centre-of-mass (CM) motion cooling and manipulation of levitated particles. In
combination with balanced detection and feedback cooling, this system has
provided picometer scale position sensitivity, zeptonewton force detection, and
sub-millikelvin CM temperatures. In this article, we develop an analytical
model of this detection system and compare its performance with experimental
results allowing us to explain the presence of spurious frequencies in the
spectra
- …