9,082 research outputs found
Singular value decomposition in parametrised tests of post-Newtonian theory
Various coefficients of the 3.5 post-Newtonian (PN) phasing formula of
non-spinning compact binaries moving in circular orbits is fully characterized
by the two component masses. If two of these coefficients are independently
measured, the masses can be estimated. Future gravitational wave observations
could measure many of the 8 independent PN coefficients calculated to date.
These additional measurements can be used to test the PN predictions of the
underlying theory of gravity. Since all of these parameters are functions of
the two component masses, there is strong correlation between the parameters
when treated independently. Using Singular Value Decomposition of the Fisher
information matrix, we remove this correlations and obtain a new set of
parameters which are linear combinations of the original phasing coefficients.
We show that the new set of parameters can be estimated with significantly
improved accuracies which has implications for the ongoing efforts to implement
parametrised tests of PN theory in the data analysis pipelines.Comment: 17 pages, 6 figures, Accepted for publication in Classical and
Quantum Gravity (Matches with the published version
Implications of binary black hole detections on the merger rates of double neutron stars and neutron star-black holes
We show that the inferred merger rate and chirp masses of binary black holes
(BBHs) detected by advanced LIGO (aLIGO) can be used to constrain the rate of
double neutron star (DNS) and neutron star - black hole (NSBH) mergers in the
universe. We explicitly demonstrate this by considering a set of publicly
available population synthesis models of \citet{Dominik:2012kk} and show that
if all the BBH mergers, GW150914, LVT151012, GW151226, and GW170104, observed
by aLIGO arise from isolated binary evolution, the predicted DNS merger rate
may be constrained to be ~\rate~ and that of NSBH mergers will be
constrained to ~\rate. The DNS merger rates are not constrained much
but the NSBH rates are tightened by a factor of as compared to their
previous rates. Note that these constrained DNS and NSBH rates are extremely
model dependent and are compared to the unconstrained values \rate~
and \rate, respectively, using the same models of
\citet{Dominik:2012kk}. These rate estimates may have implications for short
Gamma Ray Burst progenitor models assuming they are powered (solely) by DNS or
NSBH mergers. While these results are based on a set of open access population
synthesis models which may not necessarily be the representative ones, the
proposed method is very general and can be applied to any number of models
thereby yielding more realistic constraints on the DNS and NSBH merger rates
from the inferred BBH merger rate and chirp mass.Comment: 5 pages, no figures, 4 tables, v2: matches published versio
Control of a Circular Jet
The present study report direct numerical simulation (DNS) of a circular jet
and the effect of a large scale perturbation at the jet inlet. The perturbation
is used to control the jet for increased spreading. Dual-mode perturbation is
obtained by combining an axisymmetric excitation with the helical. In the fluid
dynamics videos, an active control of the circular jet at a Reynolds number of
2000 for various frequency ratios (both integer and non-integer) has been
demonstrated. When the frequency ratio is fixed to 2, bifurcation of the jet on
a plane is evident. However, for a non-integer frequency ratio, the
axisymmetric jet is seen to bloom in all directions.Comment: 2 page
- …