1,182 research outputs found

    On a Time Symmetric Formulation of Quantum Mechanics

    Get PDF
    We explore further the suggestion to describe a pre- and post-selected system by a two-state, which is determined by two conditions. Starting with a formal definition of a two-state Hilbert space and basic operations, we systematically recast the basics of quantum mechanics - dynamics, observables, and measurement theory - in terms of two-states as the elementary quantities. We find a simple and suggestive formulation, that ``unifies'' two complementary observables: probabilistic observables and non-probabilistic `weak' observables. Probabilities are relevant for measurements in the `strong coupling regime'. They are given by the absolute square of a two-amplitude (a projection of a two-state). Non-probabilistic observables are observed in sufficiently `weak' measurements, and are given by linear combinations of the two-amplitude. As a sub-class they include the `weak values' of hermitian operators. We show that in the intermediate regime, one may observe a mixing of probabilities and weak values. A consequence of the suggested formalism and measurement theory, is that the problem of non-locality and Lorentz non-covariance, of the usual prescription with a `reduction', may be eliminated. We exemplify this point for the EPR experiment and for a system under successive observations.Comment: LaTex, 44 pages, 4 figures included. Figure captions and related text in sections 3.1, 4.2 are revised. A paragraph in pages 9-10 about non-generic two-states is clarified. Footnotes adde

    Comment on ``Protective measurements of the wave function of a single squeezed harmonic-oscillator state''

    Full text link
    Alter and Yamamoto [Phys. Rev. A 53, R2911 (1996)] claimed to consider ``protective measurements'' [Phys. Lett. A 178, 38 (1993)] which we have recently introduced. We show that the measurements discussed by Alter and Yamamoto ``are not'' the protective measurements we proposed. Therefore, their results are irrelevant to the nature of protective measurements.Comment: 2 pages LaTe

    Superoscillations and tunneling times

    Get PDF
    It is proposed that superoscillations play an important role in the interferences which give rise to superluminal effects. To exemplify that, we consider a toy model which allows for a wave packet to travel, in zero time and negligible distortion a distance arbitrarily larger than the width of the wave packet. The peak is shown to result from a superoscillatory superposition at the tail. Similar reasoning applies to the dwell time.Comment: 12 page

    Sequential weak measurement

    Full text link
    The notion of weak measurement provides a formalism for extracting information from a quantum system in the limit of vanishing disturbance to its state. Here we extend this formalism to the measurement of sequences of observables. When these observables do not commute, we may obtain information about joint properties of a quantum system that would be forbidden in the usual strong measurement scenario. As an application, we provide a physically compelling characterisation of the notion of counterfactual quantum computation

    ``Weighing'' a closed system and the time-energy uncertainty principle

    Get PDF
    A gedanken-experiment is proposed for `weighing'' the total mass of a closed system from within the system. We prove that for an internal observer the time τ\tau, required to measure the total energy with accuracy ΔE\Delta E, is bounded according to τΔE>\tau \Delta E >\hbar . This time-energy uncertainty principle for a closed system follows from the measurement back-reaction on the system. We generally examine what other conserved observables are in principle measurable within a closed system and what are the corresponding uncertainty relations.Comment: 8 page

    Weak measurement takes a simple form for cumulants

    Full text link
    A weak measurement on a system is made by coupling a pointer weakly to the system and then measuring the position of the pointer. If the initial wavefunction for the pointer is real, the mean displacement of the pointer is proportional to the so-called weak value of the observable being measured. This gives an intuitively direct way of understanding weak measurement. However, if the initial pointer wavefunction takes complex values, the relationship between pointer displacement and weak value is not quite so simple, as pointed out recently by R. Jozsa. This is even more striking in the case of sequential weak measurements. These are carried out by coupling several pointers at different stages of evolution of the system, and the relationship between the products of the measured pointer positions and the sequential weak values can become extremely complicated for an arbitrary initial pointer wavefunction. Surprisingly, all this complication vanishes when one calculates the cumulants of pointer positions. These are directly proportional to the cumulants of sequential weak values. This suggests that cumulants have a fundamental physical significance for weak measurement

    Aharonov-Bohm Type Forces Between Magnetic Fluxons

    Get PDF
    Forces related to A-B phases between fluxons with Φ=αΦ0   \Phi=\alpha\Phi_0\ \ \ αinteger\alpha\ne integer are discussed. We find a α2ln(r)\alpha^2\ln(r) type interaction screened on a scale λs\lambda_s. The forces exist only when the fluxons are actually immersed in the region with non vanishing charge density and are periodic in α\alpha. We briefly comment on the problem of observing such forces.Comment: 10 pages, latex, no fi

    Trans-Planckian Tail in a Theory with a Cutoff

    Get PDF
    Trans-planckian frequencies can be mimicked outside a black-hole horizon as a tail of an exponentially large amplitude wave that is mostly hidden behind the horizon. The present proposal requires implementing a final state condition. This condition involves only frequencies below the cutoff scale. It may be interpreted as a condition on the singularity. Despite the introduction of the cutoff, the Hawking radiation is restored for static observers. Freely falling observers see empty space outside the horizon, but are "heated" as they cross the horizon.Comment: 17 pages, RevTe

    Noncommutative quantum mechanics and the Aharonov-Casher effect

    Full text link
    In this work a new method is developed to investigate the Aharonov-Casher effect in a noncommutative space. It is shown that the holonomy receives non-trivial kinematical corrections.Comment: 8 pages, Plain Tex, to appear in Eur. Phys. J.

    Quantum limitations on superluminal propagation

    Full text link
    Unstable systems such as media with inverted atomic population have been shown to allow the propagation of analytic wavepackets with group velocity faster than that of light, without violating causality. We illuminate the important role played by unstable modes in this propagation, and show that the quantum fluctuations of these modes, and their unitary time evolution, impose severe restrictions on the observation of superluminal phenomena.Comment: RevTeX 4 page
    corecore