46 research outputs found

    Casimir-Polder interaction between an excited atom and a gas dielectric medium

    Get PDF
    The Casimir-Polder potential for interaction between an excited atom and a ground-state one in the retarded case obtained with the help of perturbation technique drops as R^-2 with the distance between the atoms [E.A. Power, T.Thirunamachandran, Phys. Rev. A, 47, 2539 (1993)]. It results in diverdent integrals for interaction between an excited atom and a dilute gas medium. We investigate interaction between two atoms embedded in a dielectric medium with the help of non-perturbative approach. We take into account absorption of photons in the medium. This approach solves the problem of divergence. We consider interaction between an excited atom and a planar dielectric gas medium of ground-state atoms. We show that the retarded interaction between an excited atom and a gas of ground-state atoms is not oscillating but follows a simple power law. We show that to obtain coventional non-retarded expression for the van der Waals force between an excited atom and a dilute gas the distance between the atom and the interface should be much smaller than the free mean pass of a photon in the medium. Interaction between an excited atom and a hemisphere of ground-state atoms is considered.Comment: 23 pages, 6 figure

    Light refraction by an excited isotropic dispersing medium

    No full text

    Transition radiation in the presence of excited media

    No full text
    corecore