26,718 research outputs found
Compressor and fan wake characteristics
A triaxial probe and a rotating conventional probe, mounted on a traverse gear operated by two step motors were used to measure the mean velocities and turbulence quantities across a rotor wake at various radial locations and downstream stations. The data obtained was used in an analytical model developed to study how rotor flow and blade parameters and turbulence properties such as energy, velocity correlations, and length scale affect the rotor wake characteristics and its diffusion properties. The model, includes three dimensional attributes, can be used in predicting the discrete as well as broadband noise generated in a fan rotor, as well as in evaluating the aerodynamic losses, efficiency and optimum spacing between a rotor and stator in turbomachinery
Searching for additional heating - [OII] emission in the diffuse ionized gas of NGC891, NGC4631 and NGC3079
We present spectroscopic data of ionized gas in the disk--halo regions of
three edge-on galaxies, NGC 891, NGC 4631 and NGC 3079, covering a wavelength
range from [\ion{O}{2}] 3727\AA to [\ion{S}{2}] 6716.4\AA.
The inclusion of the [\ion{O}{2}] emission provides new constraints on the
properties of the diffuse ionized gas (DIG), in particular, the origin of the
observed spatial variations in the line intensity ratios. We used three
different methods to derive electron temperatures, abundances and ionization
fractions along the slit. The increase in the [\ion{O}{2}]/H line ratio
towards the halo in all three galaxies requires an increase either in electron
temperature or in oxygen abundance. Keeping the oxygen abundance constant
yields the most reasonable results for temperature, abundances, and ionization
fractions. Since a constant oxygen abundance seems to require an increase in
temperature towards the halo, we conclude that gradients in the electron
temperature play a significant role in the observed variations in the optical
line ratios from extraplanar DIG in these three spiral galaxies.Comment: 43 pages, 29 figure
Energetic Impact of Jet Inflated Cocoons in Relaxed Galaxy Clusters
Jets from active galactic nuclei (AGN) in the cores of galaxy clusters have
the potential to be a major contributor to the energy budget of the
intracluster medium (ICM). To study the dependence of the interaction between
the AGN jets and the ICM on the parameters of the jets themselves, we present a
parameter survey of two-dimensional (axisymmetric) ideal hydrodynamic models of
back-to-back jets injected into a cluster atmosphere (with varying Mach numbers
and kinetic luminosities). We follow the passive evolution of the resulting
structures for several times longer than the active lifetime of the jet. The
simulations fall into roughly two classes, cocoon-bounded and non-cocoon
bounded sources. We suggest a correspondence between these two classes and the
Faranoff-Riley types. We find that the cocoon-bounded sources inject
significantly more entropy into the core regions of the ICM atmosphere, even
though the efficiency with which energy is thermalized is independent of the
morphological class. In all cases, a large fraction (50--80%) of the energy
injected by the jet ends up as gravitational potential energy due to the
expansion of the atmosphere.Comment: 12 pages, Accepted for publication in Ap
A three-dimensional simulation of transition and early turbulence in a time-developing mixing layer
The physics of the transition and early turbulence regimes in the time developing mixing layer was investigated. The sensitivity of the mixing layer to the disturbance field of the initial condition is considered. The growth of the momentum thickness, the mean velocity profile, the turbulence kinetic energy, the Reynolds stresses, the anisotropy tensor, and particle track pictures of computations are all examined in an effort to better understand the physics of these regimes. The amplitude, spectrum shape, and random phases of the initial disturbance field were varied. A scheme of generating discrete orthogonal function expansions on some nonuniform grids was developed. All cases address the early or near field of the mixing layer. The most significant result shows that the secondary instability of the mixing layer is produced by spanwise variations in the straining field of the primary vortex structures
The first-mover advantage in scientific publication
Mathematical models of the scientific citation process predict a strong
"first-mover" effect under which the first papers in a field will, essentially
regardless of content, receive citations at a rate enormously higher than
papers published later. Moreover papers are expected to retain this advantage
in perpetuity -- they should receive more citations indefinitely, no matter how
many other papers are published after them. We test this conjecture against
data from a selection of fields and in several cases find a first-mover effect
of a magnitude similar to that predicted by the theory. Were we wearing our
cynical hat today, we might say that the scientist who wants to become famous
is better off -- by a wide margin -- writing a modest paper in next year's
hottest field than an outstanding paper in this year's. On the other hand,
there are some papers, albeit only a small fraction, that buck the trend and
attract significantly more citations than theory predicts despite having
relatively late publication dates. We suggest that papers of this kind, though
they often receive comparatively few citations overall, are probably worthy of
our attention.Comment: 7 pages, 3 figure
Fuzzy ARTMAP: A Neural Network Architecture for Incremental Supervised Learning of Analog Multidimensional Maps
A new neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive error and maximizes code compression, or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or "hidden units", to met accuracy criteria. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Î) and the MAX operator (v) of fuzzy logic play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved prediction is achieved by training the system several times using different orderings of the input set. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Four classes of simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithm systems. These simulations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is also compared to Salzberg's NGE system and to Simpson's FMMC system.British Petroleum (89-A-1204); Defense Advanced Research Projects Agency (90-0083); National Science Foundation (IRI 90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (90-0175
Nano-scale analysis of titanium dioxide fingerprint-development powders
Titanium dioxide based powders are regularly used in the development of latent fingerprints on dark surfaces. For analysis of prints on adhesive tapes, the titanium dioxide is suspended in a surfactant and used in the form of a small particle reagent (SPR). Analysis of commercially available products shows varying levels of effectiveness of print development, with some powders adhering to the background as well as the print. Scanning electron microscopy (SEM) images of prints developed with different powders show a range of levels of aggregation of particles.
Analytical transmission electron microscopy (TEM) of the fingerprint powder shows TiO2 particles with a surrounding coating, tens of nanometres thick, consisting of Al and Si rich material. X ray photoelectron spectroscopy (XPS) is used to determine the composition and chemical state of the surface of the powders; with a penetration depth of approximately 10nm, this technique demonstrates differing Ti: Al: Si ratios and oxidation states between the surfaces of different powders. Levels of titanium detected with this technique demonstrate variation in the integrity of the surface coating. The thickness, integrity and composition of the Al/Si-based coating is related to the level of aggregation of TiO2 particles and efficacy of print development
Electoral system design: The new international IDEA handbook
The Choice of Electoral System is one of the most important institutional decisions for any democracy. In almost all cases the choice of a particular electoral system has a profound effect on the future political life of the country concerned, and electoral systems, once chosen, often remain fairly constant as political interests solidify around and respond to the incentives presented by them. However, while conscious design has become far more prevalent recently, traditionally it has been rare for electoral systems to be consciously and deliberately selected. Often the choice was essentially accidental, the result of an unusual combination of circumstances, of a passing trend, or of a quirk of history, with the impact of colonialism and the effects of influential neighbours often being especially strong
NuSTAR Observations of G11.2â0.3
We present in this paper the hard X-ray view of the pulsar wind nebula in G11.2â0.3 and its central pulsar powered pulsar J1811â1925 as seen by NuSTAR. We complement the data with Chandra for a more complete picture and confirm the existence of a hard, power-law component in the shell with photon index Î = 2.1 ± 0.1, which we attribute to synchrotron emission. Our imaging observations of the shell show a slightly smaller radius at higher energies, consistent with Chandra results, and we find shrinkage as a function of increased energy along the jet direction, indicating that the electron outflow in the PWN may be simpler than that seen in other young PWNe. Combining NuSTAR with INTEGRAL, we find that the pulsar spectrum can be fit by a power law with Î = 1.32 ± 0.07 up to 300 keV without evidence of curvature
- âŠ