4,860 research outputs found

    Twisted Poincar\'e Invariant Quantum Field Theories

    Full text link
    It is by now well known that the Poincar\'e group acts on the Moyal plane with a twisted coproduct. Poincar\'e invariant classical field theories can be formulated for this twisted coproduct. In this paper we systematically study such a twisted Poincar\'e action in quantum theories on the Moyal plane. We develop quantum field theories invariant under the twisted action from the representations of the Poincar\'e group, ensuring also the invariance of the S-matrix under the twisted action of the group . A significant new contribution here is the construction of the Poincar\'e generators using quantum fields.Comment: 17 pages, JHEP styl

    S-Matrix on the Moyal Plane: Locality versus Lorentz Invariance

    Full text link
    Twisted quantum field theories on the Groenewold-Moyal plane are known to be non-local. Despite this non-locality, it is possible to define a generalized notion of causality. We show that interacting quantum field theories that involve only couplings between matter fields, or between matter fields and minimally coupled U(1) gauge fields are causal in this sense. On the other hand, interactions between matter fields and non-abelian gauge fields violate this generalized causality. We derive the modified Feynman rules emergent from these features. They imply that interactions of matter with non-abelian gauge fields are not Lorentz- and CPT-invariant.Comment: 15 pages, LaTeX, 1 figur

    Twisted Gauge and Gravity Theories on the Groenewold-Moyal Plane

    Full text link
    Recent work [hep-th/0504183,hep-th/0508002] indicates an approach to the formulation of diffeomorphism invariant quantum field theories (qft's) on the Groenewold-Moyal (GM) plane. In this approach to the qft's, statistics gets twisted and the S-matrix in the non-gauge qft's becomes independent of the noncommutativity parameter theta^{\mu\nu}. Here we show that the noncommutative algebra has a commutative spacetime algebra as a substructure: the Poincare, diffeomorphism and gauge groups are based on this algebra in the twisted approach as is known already from the earlier work of [hep-th/0510059]. It is natural to base covariant derivatives for gauge and gravity fields as well on this algebra. Such an approach will in particular introduce no additional gauge fields as compared to the commutative case and also enable us to treat any gauge group (and not just U(N)). Then classical gravity and gauge sectors are the same as those for \theta^{\mu \nu}=0, but their interactions with matter fields are sensitive to theta^{\mu \nu}. We construct quantum noncommutative gauge theories (for arbitrary gauge groups) by requiring consistency of twisted statistics and gauge invariance. In a subsequent paper (whose results are summarized here), the locality and Lorentz invariance properties of the S-matrices of these theories will be analyzed, and new non-trivial effects coming from noncommutativity will be elaborated. This paper contains further developments of [hep-th/0608138] and a new formulation based on its approach.Comment: 17 pages, LaTeX, 1 figur

    Statistics and UV-IR Mixing with Twisted Poincare Invariance

    Get PDF
    We elaborate on the role of quantum statistics in twisted Poincare invariant theories. It is shown that, in order to have twisted Poincare group as the symmetry of a quantum theory, statistics must be twisted. It is also confirmed that the removal of UV-IR mixing (in the absence of gauge fields) in such theories is a natural consequence.Comment: 13 pages, LaTeX; typos correcte

    Energy-Aware Cloud Management through Progressive SLA Specification

    Full text link
    Novel energy-aware cloud management methods dynamically reallocate computation across geographically distributed data centers to leverage regional electricity price and temperature differences. As a result, a managed VM may suffer occasional downtimes. Current cloud providers only offer high availability VMs, without enough flexibility to apply such energy-aware management. In this paper we show how to analyse past traces of dynamic cloud management actions based on electricity prices and temperatures to estimate VM availability and price values. We propose a novel SLA specification approach for offering VMs with different availability and price values guaranteed over multiple SLAs to enable flexible energy-aware cloud management. We determine the optimal number of such SLAs as well as their availability and price guaranteed values. We evaluate our approach in a user SLA selection simulation using Wikipedia and Grid'5000 workloads. The results show higher customer conversion and 39% average energy savings per VM.Comment: 14 pages, conferenc
    corecore