50 research outputs found

    Renewable, ethical? Assessing the energy justice potential of renewable electricity

    Get PDF
    Energy justice is increasingly being used as a framework to conceptualize the impacts of energy decision making in more holistic ways and to consider the social implications in terms of existing ethical values. Similarly, renewable energy technologies are increasingly being promoted for their environmental and social benefits. However, little work has been done to systematically examine the extent to which, in what ways and in what contexts, renewable energy technologies can contribute to achieving energy justice. This paper assesses the potential of renewable electricity technologies to address energy justice in various global contexts via a systematic review of existing studies analyzed in terms of the principles and dimensions of energy justice. Based on publications including peer reviewed academic literature, books, and in some cases reports by government or international organizations, we assess renewable electricity technologies in both grid integrated and off-grid use contexts. We conduct our investigation through the rubric of the affirmative and prohibitive principles of energy justice and in terms of its temporal, geographic, socio-political, economic, and technological dimensions. Renewable electricity technology development has and continue to have different impacts in different social contexts, and by considering the different impacts explicitly across global contexts, including differences between rural and urban contexts, this paper contributes to identifying and understanding how, in what ways, and in what particular conditions and circumstances renewable electricity technologies may correspond with or work to promote energy justice

    Oxidation--reduction midpoint potentials of the flavin, haem and Mo-pterin centres in spinach (Spinacia oleracea L.) nitrate reductase.

    No full text
    Oxidation-reduction midpoint potentials have been determined for the flavin, cytochrome b557 and Mo-pterin prosthetic groups of spinach (Spinacia oleracea L.) assimilatory nitrate reductase using visible, c.d. and room-temperature e.p.r. potentiometric titrations. At pH 7 and 25 degrees C, the midpoint potential for the FAD/FADH2 couple was determined by c.d. potentiometry to be -280 +/- 10 mV (n = 2). The redox potential for reduction of the haem was determined by visible potentiometry to be -123 +/- 10 mV (n = 1), significantly lower than the previously published value of -60 mV [Fido, Hewitt, Notton, Jones & Nasrulhaq-Boyce (1979) FEBS Lett. 99, 180-182]. Potentials for the Mo(VI)/Mo(V) and Mo(V)/Mo(IV) redox couples, determined by room-temperature e.p.r. potentiometry, were found to be +2 +/- 20 and -6 +/- 20 mV respectively. These values are very similar to the values previously determined for the FAD, haem and Mo-pterin centres in assimilatory nitrate reductase isolated from the unicellular green alga Chlorella vulgaris and indicate a close thermodynamic similarity between the two enzymes
    corecore