54 research outputs found
A priori estimates for the Hill and Dirac operators
Consider the Hill operator in , where is a 1-periodic real potential. The spectrum of is is absolutely
continuous and consists of bands separated by gaps \g_n,n\ge 1 with length
|\g_n|\ge 0. We obtain a priori estimates of the gap lengths, effective
masses, action variables for the KDV. For example, if \m_n^\pm are the
effective masses associated with the gap \g_n=(\l_n^-,\l_n^+), then
|\m_n^-+\m_n^+|\le C|\g_n|^2n^{-4} for some constant and any . In order prove these results we use the analysis of a conformal mapping
corresponding to quasimomentum of the Hill operator. That makes possible to
reformulate the problems for the differential operator as the problems of the
conformal mapping theory. Then the proof is based on the analysis of the
conformal mapping and the identities. Moreover, we obtain the similar estimates
for the Dirac operator
Stability of the inverse resonance problem on the line
In the absence of a half-bound state, a compactly supported potential of a
Schr\"odinger operator on the line is determined up to a translation by the
zeros and poles of the meropmorphically continued left (or right) reflection
coefficient. The poles are the eigenvalues and resonances, while the zeros also
are physically relevant. We prove that all compactly supported potentials
(without half-bound states) that have reflection coefficients whose zeros and
poles are \eps-close in some disk centered at the origin are also close (in a
suitable sense). In addition, we prove stability of small perturbations of the
zero potential (which has a half-bound state) from only the eigenvalues and
resonances of the perturbation.Comment: 21 page
The inverse resonance problem for perturbations of algebro-geometric potentials
We prove that a compactly supported perturbation of a rational or simply
periodic algebro-geometric potential of the one-dimensional Schr\"odinger
equation on the half line is uniquely determined by the location of its
Dirichlet eigenvalues and resonances.Comment: 14 page
Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic pseudo-differential operators
We obtain a complete asymptotic expansion of the integrated density of states
of operators of the form H =(-\Delta)^w +B in R^d. Here w >0, and B belongs to
a wide class of almost-periodic self-adjoint pseudo-differential operators of
order less than 2w. In particular, we obtain such an expansion for magnetic
Schr\"odinger operators with either smooth periodic or generic almost-periodic
coefficients.Comment: 47 pages. arXiv admin note: text overlap with arXiv:1004.293
Essential spectra of difference operators on \sZ^n-periodic graphs
Let (\cX, \rho) be a discrete metric space. We suppose that the group
\sZ^n acts freely on and that the number of orbits of with respect to
this action is finite. Then we call a \sZ^n-periodic discrete metric
space. We examine the Fredholm property and essential spectra of band-dominated
operators on where is a \sZ^n-periodic discrete metric space.
Our approach is based on the theory of band-dominated operators on \sZ^n and
their limit operators.
In case is the set of vertices of a combinatorial graph, the graph
structure defines a Schr\"{o}dinger operator on in a natural way. We
illustrate our approach by determining the essential spectra of Schr\"{o}dinger
operators with slowly oscillating potential both on zig-zag and on hexagonal
graphs, the latter being related to nano-structures
- …