54 research outputs found

    A priori estimates for the Hill and Dirac operators

    Full text link
    Consider the Hill operator Ty=−y′′+q′(t)yTy=-y''+q'(t)y in L2(R)L^2(\R), where q∈L2(0,1)q\in L^2(0,1) is a 1-periodic real potential. The spectrum of TT is is absolutely continuous and consists of bands separated by gaps \g_n,n\ge 1 with length |\g_n|\ge 0. We obtain a priori estimates of the gap lengths, effective masses, action variables for the KDV. For example, if \m_n^\pm are the effective masses associated with the gap \g_n=(\l_n^-,\l_n^+), then |\m_n^-+\m_n^+|\le C|\g_n|^2n^{-4} for some constant C=C(q)C=C(q) and any n≥1n\ge 1. In order prove these results we use the analysis of a conformal mapping corresponding to quasimomentum of the Hill operator. That makes possible to reformulate the problems for the differential operator as the problems of the conformal mapping theory. Then the proof is based on the analysis of the conformal mapping and the identities. Moreover, we obtain the similar estimates for the Dirac operator

    Stability of the inverse resonance problem on the line

    Full text link
    In the absence of a half-bound state, a compactly supported potential of a Schr\"odinger operator on the line is determined up to a translation by the zeros and poles of the meropmorphically continued left (or right) reflection coefficient. The poles are the eigenvalues and resonances, while the zeros also are physically relevant. We prove that all compactly supported potentials (without half-bound states) that have reflection coefficients whose zeros and poles are \eps-close in some disk centered at the origin are also close (in a suitable sense). In addition, we prove stability of small perturbations of the zero potential (which has a half-bound state) from only the eigenvalues and resonances of the perturbation.Comment: 21 page

    The inverse resonance problem for perturbations of algebro-geometric potentials

    Full text link
    We prove that a compactly supported perturbation of a rational or simply periodic algebro-geometric potential of the one-dimensional Schr\"odinger equation on the half line is uniquely determined by the location of its Dirichlet eigenvalues and resonances.Comment: 14 page

    Complete asymptotic expansion of the integrated density of states of multidimensional almost-periodic pseudo-differential operators

    Full text link
    We obtain a complete asymptotic expansion of the integrated density of states of operators of the form H =(-\Delta)^w +B in R^d. Here w >0, and B belongs to a wide class of almost-periodic self-adjoint pseudo-differential operators of order less than 2w. In particular, we obtain such an expansion for magnetic Schr\"odinger operators with either smooth periodic or generic almost-periodic coefficients.Comment: 47 pages. arXiv admin note: text overlap with arXiv:1004.293

    Essential spectra of difference operators on \sZ^n-periodic graphs

    Full text link
    Let (\cX, \rho) be a discrete metric space. We suppose that the group \sZ^n acts freely on XX and that the number of orbits of XX with respect to this action is finite. Then we call XX a \sZ^n-periodic discrete metric space. We examine the Fredholm property and essential spectra of band-dominated operators on lp(X)l^p(X) where XX is a \sZ^n-periodic discrete metric space. Our approach is based on the theory of band-dominated operators on \sZ^n and their limit operators. In case XX is the set of vertices of a combinatorial graph, the graph structure defines a Schr\"{o}dinger operator on lp(X)l^p(X) in a natural way. We illustrate our approach by determining the essential spectra of Schr\"{o}dinger operators with slowly oscillating potential both on zig-zag and on hexagonal graphs, the latter being related to nano-structures
    • …
    corecore