4,969 research outputs found

    Multiplexed DNA-Modified Electrodes

    Get PDF
    We report the use of silicon chips with 16 DNA-modified electrodes (DME chips) utilizing DNA-mediated charge transport for multiplexed detection of DNA and DNA-binding protein targets. Four DNA sequences were simultaneously distinguished on a single DME chip with 4-fold redundancy, including one incorporating a single base mismatch. These chips also enabled investigation of the sequence-specific activity of the restriction enzyme Alu1. DME chips supported dense DNA monolayer formation with high reproducibility, as confirmed by statistical comparison to commercially available rod electrodes. The working electrode areas on the chips were reduced to 10 μm in diameter, revealing microelectrode behavior that is beneficial for high sensitivity and rapid kinetic analysis. These results illustrate how DME chips facilitate sensitive and selective detection of DNA and DNA-binding protein targets in a robust and internally standardized multiplexed format

    Culturally Relevant Care Through the Lens of Duoethnography

    Get PDF
    Our study endeavors to explore how culturally relevant care manifests in our teaching at a predominantly Hispanic-Serving Institution (HSI). Through duoethnography and collaborative interpretation of narrative data from our former students, we seek to better understand our own and our students’ learning experiences. Collecting our own and our students’ perspectives and stories about lived experiences with us as professors in narrative form allows for us and our respondents to reflect and express freely--to share views, impressions, interpretations, and experiences in our/their own words. Analysis of narrative reflections provides an opportunity to craft a story, to give voice to those living within the intersection of race, ethnicity, and cross-cultural teaching–learning relationships at a predominantly Hispanic-Serving Institution (HSI). Findings intend to illuminate personal epistemologies (Hofer & Bendixen, 2012) and dispositions for transcending cultural, racial, and linguistic boundaries in higher education, thus providing a multifaceted collective story of cultivating care in cross-cultural teaching–learning relationships

    Culturally Relevant Care Through the Lens of Duoethnography

    Get PDF
    Our study endeavors to explore how culturally relevant care manifests in our teaching at a predominantly Hispanic-Serving Institution (HSI). Through duoethnography and collaborative interpretation of narrative data from our former students, we seek to better understand our own and our students’ learning experiences. Collecting our own and our students’ perspectives and stories about lived experiences with us as professors in narrative form allows for us and our respondents to reflect and express freely--to share views, impressions, interpretations, and experiences in our/their own words. Analysis of narrative reflections provides an opportunity to craft a story, to give voice to those living within the intersection of race, ethnicity, and cross-cultural teaching–learning relationships at a predominantly Hispanic-Serving Institution (HSI). Findings intend to illuminate personal epistemologies (Hofer & Bendixen, 2012) and dispositions for transcending cultural, racial, and linguistic boundaries in higher education, thus providing a multifaceted collective story of cultivating care in cross-cultural teaching–learning relationships

    Attempted DNA extraction from a Rancho La Brea Columbian mammoth (Mammuthus columbi): prospects for ancient DNA from asphalt deposits.

    Get PDF
    Fossil-bearing asphalt deposits are an understudied and potentially significant source of ancient DNA. Previous attempts to extract DNA from skeletons preserved at the Rancho La Brea tar pits in Los Angeles, California, have proven unsuccessful, but it is unclear whether this is due to a lack of endogenous DNA, or if the problem is caused by asphalt-mediated inhibition. In an attempt to test these hypotheses, a recently recovered Columbian mammoth (Mammuthus columbi) skeleton with an unusual pattern of asphalt impregnation was studied. Ultimately, none of the bone samples tested successfully amplified M. columbi DNA. Our work suggests that reagents typically used to remove asphalt from ancient samples also inhibit DNA extraction. Ultimately, we conclude that the probability of recovering ancient DNA from fossils in asphalt deposits is strongly (perhaps fatally) hindered by the organic compounds that permeate the bones and that at the Rancho La Brea tar pits, environmental conditions might not have been ideal for the general preservation of genetic material

    Sensory basis for detection of benthic prey in two Lake Malawi cichlids.

    Get PDF
    The adaptive radiations of African cichlids resulted in a diversity of feeding morphologies and strategies, but the role of sensory biology in prey detection and feeding ecology remains largely unexplored. Two endemic Lake Malawi cichlid genera, Tramitichromis and Aulonocara, feed on benthic invertebrates, but differ in lateral line morphology (narrow and widened lateral line canals, respectively) and foraging strategy. The hypothesis that they use their lateral line systems differently was tested by looking at the relative contribution of the lateral line system and vision in prey detection by Tramitichromis sp. and comparing results to those from a complementary study using Aulonocara stuartgranti (Schwalbe et al., 2012). First, behavioral trials were used to assess the ability of Tramitichromis sp. to detect live (mobile) and dead (immobile) benthic prey under light and dark conditions. Second, trials were run before, immediately after, and several weeks after chemical ablation of the lateral line system to determine its role in feeding behavior. Results show that Tramitichromis sp. is a visual predator that neither locates prey in the dark nor depends on lateral line input for prey detection and is thus distinct from A. stuartgranti, which uses its lateral line or a combination of vision and lateral line to detect prey depending on light condition. Investigating how functionally distinctive differences in sensory morphology are correlated with feeding behavior in the laboratory and determining the role of sensory systems in feeding ecology will provide insights into how sensory capabilities may contribute to trophic niche segregation

    DNA Charge Transport for Sensing and Signaling

    Get PDF
    The DNA duplex is an exquisite macromolecular array that stores genetic information to encode proteins and regulate pathways. Its unique structure also imparts chemical function that allows it also to mediate charge transport (CT). We have utilized diverse platforms to probe DNA CT, using spectroscopic, electrochemical, and even genetic methods. These studies have established powerful features of DNA CT chemistry. DNA CT can occur over long molecular distances as long as the bases are well stacked. The perturbations in base stacking that arise with single base mismatches, DNA lesions, and the binding of some proteins that kink the DNA all inhibit DNA CT. Significantly, single molecule studies of DNA CT show that ground state CT can occur over 34 nm if the duplex is well stacked; one single base mismatch inhibits CT. The DNA duplex is an effective sensor for the integrity of the base pair stack. Moreover, the efficiency of DNA CT is what one would expect for a stack of graphite sheets: equivalent to the stack of DNA base pairs and independent of the sugar-phosphate backbone. Since DNA CT offers a means to carry out redox chemistry from a distance, we have considered how this chemistry might be used for long range biological signaling. We have taken advantage of our chemical probes and platforms to characterize DNA CT in the context of the cell. CT can occur over long distances, perhaps funneling damage to particular sites and insulating others from oxidative stress. Significantly, transcription factors that activate the genome to respond to oxidative stress can also be activated from a distance through DNA CT. Numerous proteins maintain the integrity of the genome and an increasing number of them contain [4Fe-4S] clusters that do not appear to carry out either structural or enzymatic roles. Using electrochemical methods, we find that DNA binding shifts the redox potentials of the clusters, activating them towards oxidation at physiological potentials. We have proposed a model that describes how repair proteins may utilize DNA CT to efficiently search the genome for lesions. Importantly, many of these proteins occur in low copy numbers within the cell, and thus a processive mechanism does not provide a sufficient explanation of how they find and repair lesions before the cell divides. Using atomic force microscopy and genetic assays, we show that repair proteins proficient at DNA CT can relocalize in the vicinity of DNA lesions and can cooperate in finding lesions within the cell. Conversely, proteins defective in DNA CT cannot relocalize in the vicinity of lesions and do not assist other proteins involved in repair within the cell. Moreover such genetic defects are associated with disease in human protein analogues. As we continue to unravel this chemistry and discover more proteins with redox cofactors involved in genome maintenance, we are learning more regarding opportunities for long range signaling and sensing, and more examples of DNA CT chemistry that may provide critical functions within the cell

    DNA Charge Transport within the Cell

    Get PDF
    The unique characteristics of DNA charge transport (CT) have prompted an examination of roles for this chemistry within a biological context. Not only can DNA CT facilitate long-range oxidative damage of DNA, but redox-active proteins can couple to the DNA base stack and participate in long-range redox reactions using DNA CT. DNA transcription factors with redox-active moieties such as SoxR and p53 can use DNA CT as a form of redox sensing. DNA CT chemistry also provides a means to monitor the integrity of the DNA, given the sensitivity of DNA CT to perturbations in base stacking as arise with mismatches and lesions. Enzymes that utilize this chemistry include an interesting and ever-growing class of DNA-processing enzymes involved in DNA repair, replication, and transcription that have been found to contain 4Fe-4S clusters. DNA repair enzymes containing 4Fe-4S clusters, that include endonuclease III (EndoIII), MutY, and DinG from bacteria, as well as XPD from archaea, have been shown to be redox-active when bound to DNA, share a DNA-bound redox potential, and can be reduced and oxidized at long-range via DNA CT. Interactions between DNA and these proteins in solution, in addition to genetics experiments within Escherichia coli, suggest that DNA-mediated CT can be used as a means of cooperative signaling among DNA repair proteins that contain 4Fe-4S clusters as a first step in finding DNA damage, even within cells. On the basis of these data, we can consider also how DNA-mediated CT may be used as a means of signaling to coordinate DNA processing across the genome
    • …
    corecore