4,534 research outputs found

    The two-and three-point correlation functions of the polarized five-year WMAP sky maps

    Full text link
    We present the two- and three-point real space correlation functions of the five-year WMAP sky maps, and compare the observed functions to simulated LCDM concordance model ensembles. In agreement with previously published results, we find that the temperature correlation functions are consistent with expectations. However, the pure polarization correlation functions are acceptable only for the 33GHz band map; the 41, 61, and 94 GHz band correlation functions all exhibit significant large-scale excess structures. Further, these excess structures very closely match the correlation functions of the two (synchrotron and dust) foreground templates used to correct the WMAP data for galactic contamination, with a cross-correlation statistically significant at the 2sigma-3sigma confidence level. The correlation is slightly stronger with respect to the thermal dust template than with the synchrotron template.Comment: 10 pages, 5 figures, published in ApJ. v2: New title, minor changes to appendix, and fixed some typos. v3: Matches version published in Ap

    Mathematical modelling of the pathogenesis of multiple myeloma-induced bone disease

    Get PDF
    Multiple myeloma (MM) is the second most common haematological malignancy and results in destructive bone lesions. The interaction between MM cells and the bone microenvironment plays an important role in the development of the tumour cells and MM-induced bone disease and forms a 'vicious cycle' of tumour development and bone destruction, intensified by suppression of osteoblast activity and promotion of osteoclast activity. In this paper, a mathematical model is proposed to simulate how the interaction between MM cells and the bone microenvironment facilitates the development of the tumour cells and the resultant bone destruction. It includes both the roles of inhibited osteoblast activity and stimulated osteoclast activity. The model is able to mimic the temporal variation of bone cell concentrations and resultant bone volume after the invasion and then removal of the tumour cells and explains why MM-induced bone lesions rarely heal even after the complete removal of MM cells. The behaviour of the model compares well with published experimental data. The model serves as a first step to understand the development of MM-induced bone disease and could be applied further to evaluate the current therapies against MM-induced bone disease and even suggests new potential therapeutic targets

    Asymmetries in the CMB anisotropy field

    Full text link
    We report on the results from two independent but complementary statistical analyses of the WMAP first-year data, based on the power spectrum and N-point correlation functions. We focus on large and intermediate scales (larger than about 3 degrees) and compare the observed data against Monte Carlo ensembles with WMAP-like properties. In both analyses, we measure the amplitudes of the large-scale fluctuations on opposing hemispheres and study the ratio of the two amplitudes. The power-spectrum analysis shows that this ratio for WMAP, as measured along the axis of maximum asymmetry, is high at the 95%-99% level (depending on the particular multipole range included). The axis of maximum asymmetry of the WMAP data is weakly dependent on the multipole range under consideration but tends to lie close to the ecliptic axis. In the N-point correlation function analysis we focus on the northern and southern hemispheres defined in ecliptic coordinates, and we find that the ratio of the large-scale fluctuation amplitudes is high at the 98%-99% level. Furthermore, the results are stable with respect to choice of Galactic cut and also with respect to frequency band. A similar asymmetry is found in the COBE-DMR map, and the axis of maximum asymmetry is close to the one found in the WMAP data.Comment: 6 pages, 5 figures; version to appear in ApJ, textual improvements, added reference

    Bayesian analysis of the low-resolution polarized 3-year WMAP sky maps

    Get PDF
    We apply a previously developed Gibbs sampling framework to the foreground corrected 3-yr WMAP polarization data and compute the power spectrum and residual foreground template amplitude posterior distributions. We first analyze the co-added Q- and V-band data, and compare our results to the likelihood code published by the WMAP team. We find good agreement, and thus verify the numerics and data processing steps of both approaches. However, we also analyze the Q- and V-bands separately, allowing for non-zero EB cross-correlations and including two individual foreground template amplitudes tracing synchrotron and dust emission. In these analyses, we find tentative evidence of systematics: The foreground tracers correlate with each of the Q- and V-band sky maps individually, although not with the co-added QV map; there is a noticeable negative EB cross-correlation at l <~ 16 in the V-band map; and finally, when relaxing the constraints on EB and BB, noticeable differences are observed between the marginalized band powers in the Q- and V-bands. Further studies of these features are imperative, given the importance of the low-l EE spectrum on the optical depth of reionization tau and the spectral index of scalar perturbations n_s.Comment: 5 pages, 4 figures, submitted to ApJ

    Increasing evidence for hemispherical power asymmetry in the five-year WMAP data

    Get PDF
    (Abridged)Motivated by the recent results of Hansen et al. (2008) concerning a noticeable hemispherical power asymmetry in the WMAP data on small angular scales, we revisit the dipole modulated signal model introduced by Gordon et al. (2005). This model assumes that the true CMB signal consists of a Gaussian isotropic random field modulated by a dipole, and is characterized by an overall modulation amplitude, A, and a preferred direction, p. Previous analyses of this model has been restricted to very low resolution due to computational cost. In this paper, we double the angular resolution, and compute the full corresponding posterior distribution for the 5-year WMAP data. The results from our analysis are the following: The best-fit modulation amplitude for l <= 64 and the ILC data with the WMAP KQ85 sky cut is A=0.072 +/- 0.022, non-zero at 3.3sigma, and the preferred direction points toward Galactic coordinates (l,b) = (224 degree, -22 degree) +/- 24 degree. The corresponding results for l <~ 40 from earlier analyses was A = 0.11 +/- 0.04 and (l,b) = (225 degree,-27 degree). The statistical significance of a non-zero amplitude thus increases from 2.8sigma to 3.3sigma when increasing l_max from 40 to 64, and all results are consistent to within 1sigma. Similarly, the Bayesian log-evidence difference with respect to the isotropic model increases from Delta ln E = 1.8 to Delta ln E = 2.6, ranking as "strong evidence" on the Jeffreys' scale. The raw best-fit log-likelihood difference increases from Delta ln L = 6.1 to Delta ln L = 7.3. Similar, and often slightly stronger, results are found for other data combinations. Thus, we find that the evidence for a dipole power distribution in the WMAP data increases with l in the 5-year WMAP data set, in agreement with the reports of Hansen et al. (2008).Comment: 6 pages, 2 figures; added references and minor comments. Accepted for publication in Ap

    The joint large-scale foreground-CMB posteriors of the 3-year WMAP data

    Full text link
    Using a Gibbs sampling algorithm for joint CMB estimation and component separation, we compute the large-scale CMB and foreground posteriors of the 3-yr WMAP temperature data. Our parametric data model includes the cosmological CMB signal and instrumental noise, a single power law foreground component with free amplitude and spectral index for each pixel, a thermal dust template with a single free overall amplitude, and free monopoles and dipoles at each frequency. This simple model yields a surprisingly good fit to the data over the full frequency range from 23 to 94 GHz. We obtain a new estimate of the CMB sky signal and power spectrum, and a new foreground model, including a measurement of the effective spectral index over the high-latitude sky. A particularly significant result is the detection of a common spurious offset in all frequency bands of ~ -13muK, as well as a dipole in the V-band data. Correcting for these is essential when determining the effective spectral index of the foregrounds. We find that our new foreground model is in good agreement with template-based model presented by the WMAP team, but not with their MEM reconstruction. We believe the latter may be at least partially compromised by the residual offsets and dipoles in the data. Fortunately, the CMB power spectrum is not significantly affected by these issues, as our new spectrum is in excellent agreement with that published by the WMAP team. The corresponding cosmological parameters are also virtually unchanged.Comment: 5 pages, 4 figures, submitted to ApJL. Background data are available at http://www.astro.uio.no/~hke under the Research ta

    Bayesian Power Spectrum Analysis of the First-Year WMAP data

    Full text link
    We present the first results from a Bayesian analysis of the WMAP first year data using a Gibbs sampling technique. Using two independent, parallel supercomputer codes we analyze the WMAP Q, V and W bands. The analysis results in a full probabilistic description of the information the WMAP data set contains about the power spectrum and the all-sky map of the cosmic microwave background anisotropies. We present the complete probability distributions for each C_l including any non-Gaussianities of the power spectrum likelihood. While we find good overall agreement with the previously published WMAP spectrum, our analysis uncovers discrepancies in the power spectrum estimates at low l multipoles. For example we claim the best-fit Lambda-CDM model is consistent with the C_2 inferred from our combined Q+V+W analysis with a 10% probability of an even larger theoretical C_2. Based on our exact analysis we can therefore attribute the "low quadrupole issue" to a statistical fluctuation.Comment: 5 pages. 4 figures. For additional information and data see http://www.astro.uiuc.edu/~iodwyer/research#wma

    Bubble, Bubble, Flow and Hubble: Large Scale Galaxy Flow from Cosmological Bubble Collisions

    Full text link
    We study large scale structure in the cosmology of Coleman-de Luccia bubble collisions. Within a set of controlled approximations we calculate the effects on galaxy motion seen from inside a bubble which has undergone such a collision. We find that generically bubble collisions lead to a coherent bulk flow of galaxies on some part of our sky, the details of which depend on the initial conditions of the collision and redshift to the galaxy in question. With other parameters held fixed the effects weaken as the amount of inflation inside our bubble grows, but can produce measurable flows past the number of efolds required to solve the flatness and horizon problems.Comment: 30 pages, 8 figures, pdftex, minor corrections and references adde

    High Order Correction Terms for The Peak-Peak Correlation Function in Nearly-Gaussian Models

    Get PDF
    One possible way to investigate the nature of the primordial power spectrum fluctuations is by investigating the statistical properties of the local maximum in the density fluctuation fields. In this work we present a study of the mean correlation function, ξr\xi_r, and the correlation function for high amplitude fluctuations (the peak-peak correlation) in a slighlty non-Gaussian context. From the definition of the correlation excess, we compute the Gaussian two-point correlation function and, using an expansion in Generalized Hermite polynomials, we estimate the correlation of high density peaks in a non-Gaussian field with generic distribution and power spectrum. We also apply the results obtained to a scale-mixed distribution model, which correspond to a nearly Gaussian model. The results reveal that, even for a small deviation from Gaussianity, we can expect high density peaks to be much more correlated than in a Gaussian field with the same power spectrum. In addition, the calculations reveal how the amplitude of the peaks in the fluctuations field is related to the existing correlations. Our results may be used as an additional tool to investigate the behavior of the N-point correlation function, to understand how non-Gaussian correlations affect the peak-peak statistics and extract more information about the statistics of the density field.Comment: Accepted for publication in A&
    corecore