1,212 research outputs found
The First Direct Distance and Luminosity Determination for a Self-Luminous Giant Exoplanet: The Trigonometric Parallax to 2MASS1207334-393254Ab
We present the first trigonometric parallax and distance for a young
planetary mass object. A likely TW Hya cluster member, 2MASSW J1207334-393254Ab
(hereafter 2M1207Ab) is an M8 brown dwarf with a mid to late L type planetary
mass companion. Recent observations of spectral variability have uncovered
clear signs of disk accretion and outflow, constraining the age of the system
to <10 Myr. Because of its late spectral type and the clearly youthful nature
of the system, 2M1207b is very likely a planetary mass object. We have measured
the first accurate distance and luminosity for a self-luminous planetary mass
object. Our parallax measurements are accurate to <2 mas (1sigma) for 2M1207Ab.
With 11 total epochs of data taken from January 2006 through April 2 007 (475
images for 2M1207Ab), we determine a distance of 58.8+-7.0 pc (17.0{+2.3}{-1.8}
mas, 1.28sigma) to 2M1207Ab and a calculated luminosity of 0.68-2.2x10^-5 Lsun
for 2M1207b. Hence 2M1207Ab is a clear member of the TW Hya cluster in terms of
its distance, proper motions, and youthful nature. However, as previously noted
by Mohanty and co-workers, 2M1207b's luminosity appears low compared to its
temperature according to evolutionary models.Comment: 12 pages, 3 figures, accepted to ApJ Letter
Quantifying input uncertainty in an assemble-to-order system simulation with correlated input variables of mixed types
We consider an assemble-to-order production system where the product demands and the time since the last customer arrival are not independent. The simulation of this system requires a multivariate input model that generates random input vectors with correlated discrete and continuous components. In this paper, we capture the dependence between input variables in an undirected graphical model and decouple the statistical estimation of the univariate input distributions and the underlying dependence measure into separate problems. The estimation errors due to finiteness of the real-world data introduce the so-called input uncertainty in the simulation output. We propose a method that accounts for input uncertainty by sampling the univariate empirical distribution functions via bootstrapping and by maintaining a posterior distribution of the precision matrix that corresponds to the dependence structure of the graphical model. The method improves the coverages of the confidence intervals for the expected profit the per period. © 2014 IEEE
The very nearby M/T dwarf binary SCR 1845-6357
The recently discovered star SCR 1845-6357 is the first late M/T dwarf binary
discovered. SCR 1845 is a particular object due to its tight orbit (currently
around 4 AU) and its proximity to the Sun (3.85 pc). We present spatially
resolved VLT/NACO images and low resolution spectra of SCR 1845 in the J, H and
K near-infrared bands. Since the T dwarf companion, SCR 1845B, is so close to
the primary SCR 1845A, orbital motion is evident even within a year. Following
the orbital motion, the binary's mass can be measured accurately within a
decade, making SCR 1845B a key T-dwarf mass-luminosity calibrator. The NIR
spectra allow for accurate determination of spectral type and also for rough
estimates of the object's physical parameters. The spectral type of SCR 1845B
is determined by direct comparison of the flux calibrated JHK spectra with T
dwarf standard template spectra and also by NIR spectral indices obtained from
synthetic photometry. Constrained values for surface gravity, effective
temperature and metallicity are derived by comparison with model spectra. Our
data prove that SCR 1845B is a brown dwarf of spectral type T6 that is
co-moving with and therefore gravitationally bound to the M8.5 primary. Fitting
the NIR spectrum of SCR 1845B to model spectra yields an effective temperature
of about 950K and a surface gravity log(g)=5.1 (cgs) assuming solar
metallicity. Mass and age of SCR 1845B are in the range 40 to 50 Jupiter masses
and 1.8 to 3.1 Gyr.Comment: 5 pages, 4 figures, accepted for publication in Astronomy &
Astrophysic
Hot Gas Structure in the Elliptical Galaxy NGC 4472
We present X-ray spectroscopic and morphological analyses using Chandra ACIS
and ROSAT observations of the giant elliptical galaxy NGC 4472 in the Virgo
cluster. We discuss previously unobserved X-ray structures within the extended
galactic corona. In the inner 2' of the galaxy, we find X-ray holes or cavities
with radii of ~2 kpc, corresponding to the position of radio lobes. These holes
were produced during a period of nuclear activity that began 1.2 x 10^7 years
ago and may be ongoing. We also find an asymmetrical edge in the galaxy X-ray
emission 3' (14 kpc) northeast of the core and an ~8' tail (36 kpc) extending
southwest of the galaxy. These two features probably result from the
interaction of NGC 4472 gas with the Virgo gas, which produces compression in
the direction of NGC 4472's infall and an extended tail from ram pressure
stripping. Assuming the tail is in pressure equilibrium with the surrounding
gas, we compute its angle to our line of sight and estimate that its true
extent exceeds 100 kpc. Finally, in addition to emission from the nucleus
(first detected by Soldatenkov, Vikhlinin & Pavlinsky), we detect two small
extended sources within 10'' of the nucleus of the galaxy, both of which have
luminosities of ~7 x 10^38 erg/s.Comment: 25 pages, 11 figures, accepted by Ap
Near optimality guarantees for data-driven newsvendor with temporally dependent demand: A Monte Carlo approach
We consider a newsvendor problem with stationary and temporally dependent demand in the absence of complete information about the demand process. The objective is to compute a probabilistic guarantee such that the expected cost of an inventory-target estimate is arbitrarily close to the expected cost of the optimal critical-fractile solution. We do this by sampling dependent uniform random variates matching the underlying dependence structure of the demand process - rather than sampling the actual demand which requires the specification of a marginal distribution function - and by approximating a lower bound on the probability of the so-called near optimality. Our analysis sheds light on the role of temporal dependence in the resulting probabilistic guarantee, which has been only investigated for independent and identically distributed demand in the inventory management literature. © 2013 IEEE
A Survey for Massive Giant Planets in Debris Disks with Evacuated Inner Cavities
The commonality of collisionally replenished debris around main sequence
stars suggests that minor bodies are frequent around Sun-like stars. Whether or
not debris disks in general are accompanied by planets is yet unknown, but
debris disks with large inner cavities - perhaps dynamically cleared - are
considered to be prime candidates for hosting large-separation massive giant
planets. We present here a high-contrast VLT/NACO angular differential imaging
survey for eight such cold debris disks. We investigated the presence of
massive giant planets in the range of orbital radii where the inner edge of the
dust debris is expected. Our observations are sensitive to planets and brown
dwarfs with masses >3 to 7 Jupiter mass, depending on the age and distance of
the target star. Our observations did not identify any planet candidates. We
compare the derived planet mass upper limits to the minimum planet mass
required to dynamically clear the inner disks. While we cannot exclude that
single giant planets are responsible for clearing out the inner debris disks,
our observations constrain the parameter space available for such planets. The
non-detection of massive planets in these evacuated debris disks further
reinforces the notion that the giant planet population is confined to the inner
disk (<15 AU).Comment: Accepted for publication in Ap
Discovery of a Very Nearby Brown Dwarf to the Sun: A Methane Rich Brown Dwarf Companion to the Low Mass Star SCR 1845-6357
We present VLT/NACO SDI images of the very nearby star SCR 1845-6357
(hereafter SCR 1845). SCR 1845 is a recently discovered (Hambly et al. 2004)
M8.5 star just 3.85 pc from the sun (Henry et al. 2006). Using the capabilities
of the unique SDI device, we discovered a substellar companion to SCR 1845 at a
separation of 4.5 AU (1.170''+-0.003'' on the sky) and fainter by 3.57+-0.057
mag in the 1.575 um SDI filter. This substellar companion has an H magnitude of
13.16+0.31-0.26 (absolute H magnitude of 15.30+0.31-0.26), making it likely the
brightest mid-T dwarf known. The unique Simultaneous Differential Imager (SDI)
consists of 3 narrowband filters placed around the 1.6 um methane absorption
feature characteristic of T-dwarfs (Teff < 1200 K). The flux of the substellar
companion drops by a factor of 2.7+-0.1 between the SDI F1(1.575 um) filter and
the SDI F3(1.625 um) filter, consistent with strong methane absorption in a
substellar companion. We estimate a spectral type of T5.5+-1 for the companion
based on the strength of this methane break. The chances that this object is a
background T dwarf are vanishing small -- and there is no isolated background
T-dwarf in this part of the sky according to 2MASS. Thus, it is a bound
companion, hereafter SCR 1845-6357B. For an age range of 100 Myr - 10 Gyr and
spectral type range of T4.5-T6.5, we find a mass range of 9 - 65 MJup for SCR
1845B from the Baraffe et al. 2003 COND models. SCR 1845AB is the 24th closest
stellar system to the Sun (at 3.85 pc); the only brown dwarf system closer to
the Sun is Eps Indi Ba-Bb (at 3.626 pc). In addition, this is the first T-dwarf
companion discovered around a low mass star.Comment: 8 pages, 3 figures. Accepted to the Astrophysical Journal Letter
A simulation-based support tool for data-driven decision making: Operational testing for dependence modeling
Dependencies occur naturally between input processes of many manufacturing and service applications. When the dependence parameters are known with certainty, the failure to factor the dependencies into decisions is well known to waste significant resources in system management. Our focus is on the case of unknown dependence parameters that must be estimated from finite amounts of historical input data. In this case, the estimates of the unknown dependence parameters are random variables and simulations are designed to account for the dependence parameter uncertainty to better support the data-driven decision making. The premise of our paper is that there are certain cases in which the assumption of an independent input process to minimize the expected cost of input parameter uncertainty becomes preferable to accounting for the dependence parameter uncertainty in the simulation. Therefore, a fundamental question to answer before capturing the dependence parameter uncertainty in a stochastic system simulation is whether there is sufficient statistical evidence to represent the dependence, despite the uncertainty around its estimate, in the presence of limited data. We seek an answer for this question within a data-driven inventory-management context by considering an intermittent demand process with correlated demand size and number of interdemand periods. We propose two new finite-sample hypothesis tests to serve as the decision support tools determining when to ignore the correlation and when to account for the correlation together with the uncertainty around its estimate. We show that a statistical test accounting for the expected cost of correlation parameter uncertainty tends to reject the independence assumption less frequently than a statistical test which only considers the sampling distribution of the correlation-parameter estimator. The use of these tests is illustrated with examples and insights are provided into operational testing for dependence modeling. © 2014 IEEE
- …