451 research outputs found

    Cluster structures for 2-Calabi-Yau categories and unipotent groups

    Full text link
    We investigate cluster tilting objects (and subcategories) in triangulated 2-Calabi-Yau categories and related categories. In particular we construct a new class of such categories related to preprojective algebras of non Dynkin quivers associated with elements in the Coxeter group. This class of 2-Calabi-Yau categories contains the cluster categories and the stable categories of preprojective algebras of Dynkin graphs as special cases. For these 2-Calabi-Yau categories we construct cluster tilting objects associated with each reduced expression. The associated quiver is described in terms of the reduced expression. Motivated by the theory of cluster algebras, we formulate the notions of (weak) cluster structure and substructure, and give several illustrations of these concepts. We give applications to cluster algebras and subcluster algebras related to unipotent groups, both in the Dynkin and non Dynkin case.Comment: 49 pages. For the third version the presentation is revised, especially Chapter III replaces the old Chapter III and I

    Azumaya Objects in Triangulated Bicategories

    Full text link
    We introduce the notion of Azumaya object in general homotopy-theoretic settings. We give a self-contained account of Azumaya objects and Brauer groups in bicategorical contexts, generalizing the Brauer group of a commutative ring. We go on to describe triangulated bicategories and prove a characterization theorem for Azumaya objects therein. This theory applies to give a homotopical Brauer group for derived categories of rings and ring spectra. We show that the homotopical Brauer group of an Eilenberg-Mac Lane spectrum is isomorphic to the homotopical Brauer group of its underlying commutative ring. We also discuss tilting theory as an application of invertibility in triangulated bicategories.Comment: 23 pages; final version; to appear in Journal of Homotopy and Related Structure

    Auslander-Buchweitz approximation theory for triangulated categories

    Full text link
    We introduce and develop an analogous of the Auslander-Buchweitz approximation theory (see \cite{AB}) in the context of triangulated categories, by using a version of relative homology in this setting. We also prove several results concerning relative homological algebra in a triangulated category \T, which are based on the behavior of certain subcategories under finiteness of resolutions and vanishing of Hom-spaces. For example: we establish the existence of preenvelopes (and precovers) in certain triangulated subcategories of \T. The results resemble various constructions and results of Auslander and Buchweitz, and are concentrated in exploring the structure of a triangulated category \T equipped with a pair (\X,\omega), where \X is closed under extensions and ω\omega is a weak-cogenerator in \X, usually under additional conditions. This reduces, among other things, to the existence of distinguished triangles enjoying special properties, and the behavior of (suitably defined) (co)resolutions, projective or injective dimension of objects of \T and the formation of orthogonal subcategories. Finally, some relationships with the Rouquier's dimension in triangulated categories is discussed.Comment: To appear at: Appl. Categor. Struct. (2011); 22 page

    Quivers from Matrix Factorizations

    Full text link
    We discuss how matrix factorizations offer a practical method of computing the quiver and associated superpotential for a hypersurface singularity. This method also yields explicit geometrical interpretations of D-branes (i.e., quiver representations) on a resolution given in terms of Grassmannians. As an example we analyze some non-toric singularities which are resolved by a single CP1 but have "length" greater than one. These examples have a much richer structure than conifolds. A picture is proposed that relates matrix factorizations in Landau-Ginzburg theories to the way that matrix factorizations are used in this paper to perform noncommutative resolutions.Comment: 33 pages, (minor changes

    Applications of BGP-reflection functors: isomorphisms of cluster algebras

    Full text link
    Given a symmetrizable generalized Cartan matrix AA, for any index kk, one can define an automorphism associated with A,A, of the field Q(u1,>...,un)\mathbf{Q}(u_1, >..., u_n) of rational functions of nn independent indeterminates u1,...,un.u_1,..., u_n. It is an isomorphism between two cluster algebras associated to the matrix AA (see section 4 for precise meaning). When AA is of finite type, these isomorphisms behave nicely, they are compatible with the BGP-reflection functors of cluster categories defined in [Z1, Z2] if we identify the indecomposable objects in the categories with cluster variables of the corresponding cluster algebras, and they are also compatible with the "truncated simple reflections" defined in [FZ2, FZ3]. Using the construction of preprojective or preinjective modules of hereditary algebras by Dlab-Ringel [DR] and the Coxeter automorphisms (i.e., a product of these isomorphisms), we construct infinitely many cluster variables for cluster algebras of infinite type and all cluster variables for finite types.Comment: revised versio

    Universal deformation rings for the symmetric group S_4

    Full text link
    Let k be an algebraically closed field of characteristic 2, and let W be the ring of infinite Witt vectors over k. Let S_4 denote the symmetric group on 4 letters. We determine the universal deformation ring R(S_4,V) for every kS_4-module V which has stable endomorphism ring k and show that R(S_4,V) is isomorphic to either k, or W[t]/(t^2,2t), or the group ring W[Z/2]. This gives a positive answer in this case to a question raised by the first author and Chinburg whether the universal deformation ring of a representation of a finite group with stable endomorphism ring k is always isomorphic to a subquotient ring of the group ring over W of a defect group of the modular block associated to the representation.Comment: 12 pages, 2 figure

    From Euclidean Geometry to Knots and Nets

    Get PDF
    This document is the Accepted Manuscript of an article accepted for publication in Synthese. Under embargo until 19 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s11229-017-1558-x.This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or imaginative manipulation of mental models of mathematical phenomena. Proofs relying on diagrams can be rigorous if (a) it is easy to draw a diagram that shares or otherwise indicates the structure of the mathematical object, (b) the information thus displayed is not metrical and (c) it is possible to put the inferences into systematic mathematical relation with other mathematical inferential practices. Proofs that appeal to mental models can be rigorous if the mental models can be externalised as diagrammatic practice that satisfies these three conditions.Peer reviewe

    Support varieties for selfinjective algebras

    Full text link
    Support varieties for any finite dimensional algebra over a field were introduced by Snashall-Solberg using graded subalgebras of the Hochschild cohomology. We mainly study these varieties for selfinjective algebras under appropriate finite generation hypotheses. Then many of the standard results from the theory of support varieties for finite groups generalize to this situation. In particular, the complexity of the module equals the dimension of its corresponding variety, all closed homogeneous varieties occur as the variety of some module, the variety of an indecomposable module is connected, periodic modules are lines and for symmetric algebras a generalization of Webb's theorem is true
    corecore