13 research outputs found

    Magneto-transport study of top- and back-gated LaAlO3_3/SrTiO3_3 heterostructures

    Full text link
    We report a detailed analysis of magneto-transport properties of top- and back-gated LaAlO3_3/SrTiO3_3 heterostructures. Efficient modulation in magneto-resistance, carrier density, and mobility of the two-dimensional electron liquid present at the interface is achieved by sweeping top and back gate voltages. Analyzing those changes with respect to the carrier density tuning, we observe that the back gate strongly modifies the electron mobility while the top gate mainly varies the carrier density. The evolution of the spin-orbit interaction is also followed as a function of top and back gating.Comment: 15 pages, 6 figure

    Effect of Short-Term Administration of Glucagon on Gene Expression of the Insulin Receptor in Primary Cultured Calf Hepatocytes

    Get PDF
    This study investigated whether increased glucagon levels, caused by the short-term administration of glucagon, lead to an increase in gene expression of the insulin receptor (InsR) in calf hepatocytes cultured in vitro. After 72 hrs of culturing, glucagon was added to calf hepatocytes at a five different concentrations of 0, 1, 10, 100 and 1000 nM. InsR mRNA expression was determined by internally controlled reverse transcriptase polymerase chain reaction. No changes in InsR mRNA expression (InsR/β-actin gray scale) were detected in hepatocytes treated with glucagon compared with the control group and there were no significant differences between the different concentrations. In conclusion, short-term administration of glucagon did not directly influence the gene expression of InsR in primary cultured calf hepatocytes

    Strange particle production in proton-proton collisions at s=0.9\sqrt{s}=0.9 TeV with ALICE at the LHC

    Get PDF
    The production of mesons containing strange quarks (Ks0^0_s, ϕ\phi) and both singly and doubly strange baryons (Λ\Lambda, Anti-Λ\Lambda, and Ξ\Xi+Anti-Ξ\Xi) are measured at central rapidity in pp collisions at s\sqrt{s} = 0.9 TeV with the ALICE experiment at the LHC. The results are obtained from the analysis of about 250 k minimum bias events recorded in 2009. Measurements of yields (dN/dy) and transverse momentum spectra at central rapidities for inelastic pp collisions are presented. For mesons, we report yields () of 0.184 ±\pm 0.002 stat. ±\pm 0.006 syst. for Ks0^0_s and 0.021 ±\pm 0.004 stat. ±\pm 0.003 syst. for ϕ\phi. For baryons, we find = 0.048 ±\pm 0.001 stat. ±\pm 0.004 syst. for Λ\Lambda, 0.047 ±\pm 0.002 stat. ±\pm 0.005 syst. for Anti-Λ\Lambda and 0.0101 ±\pm 0.0020 stat. ±\pm 0.0009 syst. for Ξ\Xi+Anti-Ξ\Xi. The results are also compared with predictions for identified particle spectra from QCD-inspired models and provide a baseline for comparisons with both future pp measurements at higher energies and heavy-ion collisions.Comment: 33 pages, 21 captioned figures, 10 tables, authors from page 28, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/387

    Observation of Z production in proton-lead collisions at LHCb

    Get PDF
    The first observation of Z boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of root(s) N N = 5TeV is presented. The data sample corresponds to an integrated luminosity of 1.6 nb(-1) collected with the LHCb detector. The Z candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above 20 GeV/c. The invariant dimuon mass is restricted to the range 60-120 GeV/c. The Z production cross-section is measured to be sigma(Z ->mu+mu-) (fwd) = 13.5(-4.0)(+5.4)(stat.) +/- 1.2(syst.) nb in the direction of the proton beam and sigma(Z ->mu+mu-) (bwd) = 10.7(-5.1)(+8.4)(stat.) +/- 1.0(syst.) nb in the direction of the lead beam, where the first uncertainty is statistical and the second systematic

    Single Layer Graphene Oxide Sheets-Epoxy Nanocomposites with Greatly Improved Mechanical and Thermal Properties

    No full text
    The single layer graphene oxide (GO) sheets-epoxy nanocomposites were prepared by directly dispersing concentrated GO aqueous colloid into dimethylformamide (DMF), and then incorporating the mixed solution into epoxy resin. The mechanical and thermal properties of the as-prepared nanocomposites were investigated by Notched Izod impact tests and thermogravimetric analysis. Significant improvements in both impact strength and thermal properties were observed for the nanocomposites at very low level of GO loading content. The impact strength of the nonacomposites containing 0.15 wt% GO was 10.66±0.75 MPa, which was 165.84 % higher than that of the pure epoxy resin (4.01±0.52 MPa). The decomposition temperature of the nanocomposites containing 0.3 wt % GO increased about 12 °C. The effective reinforcement of the GO based epoxy nanocomposites can be attributed to the good dispersion and the strong interfacial interactions between the GO sheets and the epoxy resin matrices

    Single layer graphene oxide sheets-epoxy nanocomposites with greatly improved mechanical and

    No full text
    The single layer graphene oxide (GO) sheets-epoxy nanocomposites were prepared by directly dispersing concentrated GO aqueous colloid into dimethylformamide (DMF), and then incorporating the mixed solution into epoxy resin. The mechanical and thermal properties of the as-prepared nanocomposites were investigated by Notched Izod impact tests and thermogravimetric analysis. Significant improvements in both impact strength and thermal properties were observed for the nanocomposites at very low level of GO loading content. The impact strength of the nonacomposites containing 0.15 wt% GO was 10.66±0.75 MPa, which was 165.84 % higher than that of the pure epoxy resin (4.01±0.52 MPa). The decomposition temperature of the nanocomposites containing 0.3 wt % GO increased about 12 °C. The effective reinforcement of the GO based epoxy nanocomposites is mainly due to the good dispersion and strong interfacial interactions between the GO sheets and the epoxy resin matrices

    Evaluation of the Difference of L-selectin, Tumor Necrosis Factor- and Sialic Acid Concentration in Dairy Cows with Subclinical Ketosis and without Subclinical Ketosis

    No full text
    Ketosis is a major disease related with negative energy balance and immune suppression in dairy cows. The objective of this study was to examine the differences in β-hydroxybutyrate (BHBA), L-selectin, glucose, tumor necrosis factor-α (TNF-α), non-esterified fatty acids (NEFA), and sialic acid (SA) concentrations in serum in healthy dairy cows and those with subclinical ketosis during the early lactation period. The blood from 20 healthy cows and 20 subclinically affected cows were sampled. All the cows were within the first 2 months of lactation. Serum concentrations of the various aforementioned factors were measured using a number of different methods. The results demonstrated that in cows affected by subclinical ketosis, NEFA concentrations were significantly higher, and glucose and L-selectin concentrations were significantly lower than healthy cows. There was no significant difference in serum SA and TNF-α of dairy cows with subclinical ketosis compared to the control cows. The decrease in concentration of serum L-selectin may be related to immune suppression
    corecore