8,584 research outputs found

    Proton-Coupled Electron Flow in Protein Redox Machines

    Get PDF
    Electron transfer (ET) reactions are fundamental steps in biological redox processes. Respiration is a case in point: at least 15 ET reactions are required to take reducing equivalents from NADH, deposit them in O_2, and generate the electrochemical proton gradient that drives ATP synthesis. Most of these reactions involve quantum tunneling between weakly coupled redox cofactors (ET distances > 10 Ã…) embedded in the interiors of folded proteins. Here we review experimental findings that have shed light on the factors controlling these distant ET events. We also review work on a sensitizer-modified copper protein photosystem in which multistep electron tunneling (hopping) through an intervening tryptophan is orders of magnitude faster than the corresponding single-step ET reaction.If proton transfers are coupled to ET events, we refer to the processes as proton coupled ET, or PCET, a term introduced by Huynh and Meyer in 1981. Here we focus on two protein redox machines, photosystem II and ribonucleotide reductase, where PCET processes involving tyrosines are believed to be critical for function. Relevant tyrosine model systems also will be discussed

    Mechanism of H_2 Evolution from a Photogenerated Hydridocobaloxime

    Get PDF
    Proton transfer from the triplet excited state of brominated naphthol to a difluoroboryl bridged Co^I-diglyoxime complex, forming Co^(III)H, was monitored via transient absorption. The second-order rate constant for Co^(III)H formation is in the range (3.5−4.7) × 10^9 M^(−1) s^(−1), with proton transfer coupled to excited-state deactivation of the photoacid. Co^(III)H is subsequently reduced by excess Co^I-diglyoxime in solution to produce Co^(II)H (k_(red) = 9.2 × 10^6 M^(−1) s^(−1)), which is then protonated to yield Co^(II)-diglyoxime and H_2

    A single intrinsic Josephson junction with double-sided fabrication technique

    Full text link
    We make stacks of intrinsic Josephson junctions (IJJs) imbedded in the bulk of very thin (d≤100d\leq 100~nm) Bi2Sr2CaCu2O8+x\mathrm{Bi_2Sr_2CaCu_2O_{8+x}} single crystals. By precisely controlling the etching depth during the double-sided fabrication process, the stacks can be reproducibly tailor-made to be of any microscopic height (0−9nm<d0-9 \mathrm{nm} <d), i.e. enclosing a specified number of IJJ (0-6), including the important case of a single junction. We discuss reproducible gap-like features in the current-voltage characteristics of the samples at high bias.Comment: 3 pages, 4 figures, to be published in APL May. 2

    Anisotropic low-temperature piezoresistance in (311)A GaAs two-dimensional holes

    Full text link
    We report low-temperature resistance measurements in a modulation-doped, (311)A GaAs two-dimensional hole system as a function of applied in-plane strain. The data reveal a strong but anisotropic piezoresistance whose magnitude depends on the density as well as the direction along which the resistance is measured. At a density of 1.6×10111.6\times10^{11} cm−2^{-2} and for a strain of about 2×10−42\times10^{-4} applied along [011ˉ\bar{1}], e.g., the resistance measured along this direction changes by nearly a factor of two while the resistance change in the [2ˉ\bar{2}33] direction is less than 10% and has the opposite sign. Our accurate energy band calculations indicate a pronounced and anisotropic deformation of the heavy-hole dispersion with strain, qualitatively consistent with the experimental data. The extremely anisotropic magnitude of the piezoresistance, however, lacks a quantitative explanation.Comment: 4 pages. Submitted to Applied Physics Letter

    Extrinsic Entwined with Intrinsic Spin Hall Effect in Disordered Mesoscopic Bars

    Full text link
    We show that pure spin Hall current, flowing out of a four-terminal phase-coherent two-dimensional electron gas (2DEG) within inversion asymmetric semiconductor heterostructure, contains contributions from both the extrinsic mechanisms (spin-orbit dependent scattering off impurities) and the intrinsic ones (due to the Rashba coupling). While the extrinsic contribution vanishes in the weakly and strongly disordered limits, and the intrinsic one dominates in the quasiballistic limit, in the crossover transport regime the spin Hall conductance, exhibiting sample-to-sample large fluctuations and sign change, is not simply reducible to either of the two mechanisms, which can be relevant for interpretation of experiments on dirty 2DEGs [V. Sih et al., Nature Phys. 1, 31 (2005)].Comment: 5 pages, 3 color EPS figure

    Standing wave oscillations in binary mixture convection: from onset via symmetry breaking to period doubling into chaos

    Full text link
    Oscillatory solution branches of the hydrodynamic field equations describing convection in the form of a standing wave (SW) in binary fluid mixtures heated from below are determined completely for several negative Soret coefficients. Galerkin as well as finite-difference simulations were used. They were augmented by simple control methods to obtain also unstable SW states. For sufficiently negative Soret coefficients unstable SWs bifurcate subcritically out of the quiescent conductive state. They become stable via a saddle-node bifurcation when lateral phase pinning is exerted. Eventually their invariance under time-shift by half a period combined with reflexion at midheight of the fluid layer gets broken. Thereafter they terminate by undergoing a period-doubling cascade into chaos

    Superconducting properties of ultrathin Bi2Sr2CaCu2O8+x single crystals

    Full text link
    We use Ar-ion milling to thin Bi2212 single crystals down to a few nanometers or one-to-two (CuO2)2 layers. With decreasing the thickness, superconducting transition temperature gradually decreases to zero and the in-plane resistivity increases to large values indicating the existence of a superconductor-insulator transition in ultrathin Bi2212 single crystals.Comment: 17 pages, 6 figures, to appear in J. Appl. Phys. 98(3) 200

    The IBIS soft gamma-ray sky after 1000 INTEGRAL orbits

    Get PDF
    We report here an all-sky soft gamma-ray source catalog based on IBIS observations performed during the first 1000 orbits of INTEGRAL. The database for the construction of the source list consists of all good quality data available from launch in 2002 up to the end of 2010. This corresponds to ∼\sim110 Ms of scientific public observations with a concentrated coverage on the Galactic Plane and extragalactic deep exposures. This new catalog includes 939 sources above a 4.5 sigma significance threshold detected in the 17-100 keV energy band, of which 120 represent previously undiscovered soft gamma-ray emitters. The source positions are determined, mean fluxes are provided in two main energy bands, and are reported together with the overall source exposure. Indicative levels of variability are provided, and outburst times and durations are given for transient sources. Comparison is made with previous IBIS catalogs, and those from other similar missions.Comment: 65 pages, 9 figures, 2 tables, accepted for publication in ApJ Supplement

    Long Distance Transport of Ultracold Atoms using a 1D optical lattice

    Full text link
    We study the horizontal transport of ultracold atoms over macroscopic distances of up to 20 cm with a moving 1D optical lattice. By using an optical Bessel beam to form the optical lattice, we can achieve nearly homogeneous trapping conditions over the full transport length, which is crucial in order to hold the atoms against gravity for such a wide range. Fast transport velocities of up to 6 m/s (corresponding to about 1100 photon recoils) and accelerations of up to 2600 m/s2 are reached. Even at high velocities the momentum of the atoms is precisely defined with an uncertainty of less than one photon recoil. This allows for construction of an atom catapult with high kinetic energy resolution, which might have applications in novel collision experiments.Comment: 15 pages, 8 figure
    • …
    corecore