3,653 research outputs found
Synthesis and structural characterization of 2Dioxane.2H2O.CuCl2: metal-organic compound with Heisenberg antiferromagnetic S=1/2 chains
A novel organometallic compound 2Dioxane.CuCl2.2H2O has been synthesized and
structurally characterized by X-ray crystallography. Magnetic susceptibility
and zero-field inelastic neutron scattering have also been used to study its
magnetic properties. It turns out that this material is a weakly coupled
one-dimensional S=1/2 Heisenberg antiferromagnetic chain system with chain
direction along the crystallographic c axis and the nearest-neighbor
intra-chain exchange constant J=0.85(4) meV. The next-nearest-neighbor
inter-chain exchange constant J' is also estimated to be 0.05 meV. The observed
magnetic excitation spectrum from inelastic neutron scattering is in excellent
agreement with numerical calculations based on the Muller ansatz.Comment: 4 pages; 5 figure
Anomalous Hall Effect in three ferromagnets: EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30
The Hall resistivity (Rho_xy), resistivity (Rho_xx), and magnetization of
three metallic ferromagnets are investigated as a function of magnetic field
and temperature. The three ferromagnets, EuFe4Sb12 (Tc = 84 K), Yb14MnSb11 (Tc
= 53 K), and Eu8Ga16Ge30 (Tc = 36 K) are Zintl compounds with carrier
concentrations between 1 x 10^21 cm^-3 and 3.5 x 10^21 cm^-3. The relative
decrease in Rho_xx below Tc [Rho_xx(Tc)/Rho_xx(2 K)] is 28, 6.5, and 1.3 for
EuFe4Sb12, Yb14MnSb11, and Eu8Ga16Ge30 respectively. The low carrier
concentrations coupled with low magnetic anisotropies allow a relatively clean
separation between the anomalous (Rho_'xy), and normal contributions to the
measured Hall resistivity. For each compound the anomalous contribution in the
zero field limit is fit to alpha Rho_xx + sigma_xy rho_xx^2 for temperatures T
< Tc. The anomalous Hall conductivity, sigma_xy, is -220 +- 5 (Ohm^-1 cm^-1),
-14.7 +- 1 (Ohm^-1 cm^-1), and 28 +- 3 (Ohm^-1 cm^-1) for EuFe4Sb12,
Yb14MnSb11, and Eu8Ga16Ge30 respectively and is independent of temperature for
T < Tc if the change in spontaneous magnetization (order parameter) with
temperature is taken into account. These data are consistent with recent
theories of the anomalous Hall effect that suggest that even for stochiometric
ferromagnetic crystals, such as those studied in this article, the intrinsic
Hall conductivity is finite at T = 0, and is a ground state property that can
be calculated from the electronic structure.Comment: 22 pages, 13 figures Submitted to PR
- …