272 research outputs found

    Magic Supergravities, N= 8 and Black Hole Composites

    Get PDF
    We present explicit U-duality invariants for the R, C, Q, O$ (real, complex, quaternionic and octonionic) magic supergravities in four and five dimensions using complex forms with a reality condition. From these invariants we derive an explicit entropy function and corresponding stabilization equations which we use to exhibit stationary multi-center 1/2 BPS solutions of these N=2 d=4 theories, starting with the octonionic one with E_{7(-25)} duality symmetry. We generalize to stationary 1/8 BPS multicenter solutions of N=8, d=4 supergravity, using the consistent truncation to the quaternionic magic N=2 supergravity. We present a general solution of non-BPS attractor equations of the STU truncation of magic models. We finish with a discussion of the BPS-non-BPS relations and attractors in N=2 versus N= 5, 6, 8.Comment: 33 pages, references added plus brief outline at end of introductio

    Stochastic resonance and noise delayed extinction in a model of two competing species

    Full text link
    We study the role of the noise in the dynamics of two competing species. We consider generalized Lotka-Volterra equations in the presence of a multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is a random process which obeys a stochastic differential equation with a generalized bistable potential in the presence of a periodic driving term, which accounts for the environment temperature variation. We find noise-induced periodic oscillations of the species concentrations and stochastic resonance phenomenon. We find also a nonmonotonic behavior of the mean extinction time of one of the two competing species as a function of the additive noise intensity.Comment: 11 pages, 6 figures, 17 panels. To appear in Physica

    Stochastic synchronization in globally coupled phase oscillators

    Full text link
    Cooperative effects of periodic force and noise in globally Cooperative effects of periodic force and noise in globally coupled systems are studied using a nonlinear diffusion equation for the number density. The amplitude of the order parameter oscillation is enhanced in an intermediate range of noise strength for a globally coupled bistable system, and the order parameter oscillation is entrained to the external periodic force in an intermediate range of noise strength. These enhancement phenomena of the response of the order parameter in the deterministic equations are interpreted as stochastic resonance and stochastic synchronization in globally coupled systems.Comment: 5 figure

    Portraits of Complex Networks

    Full text link
    We propose a method for characterizing large complex networks by introducing a new matrix structure, unique for a given network, which encodes structural information; provides useful visualization, even for very large networks; and allows for rigorous statistical comparison between networks. Dynamic processes such as percolation can be visualized using animations. Applications to graph theory are discussed, as are generalizations to weighted networks, real-world network similarity testing, and applicability to the graph isomorphism problem.Comment: 6 pages, 9 figure

    Statistics of Cycles: How Loopy is your Network?

    Full text link
    We study the distribution of cycles of length h in large networks (of size N>>1) and find it to be an excellent ergodic estimator, even in the extreme inhomogeneous case of scale-free networks. The distribution is sharply peaked around a characteristic cycle length, h* ~ N^a. Our results suggest that h* and the exponent a might usefully characterize broad families of networks. In addition to an exact counting of cycles in hierarchical nets, we present a Monte-Carlo sampling algorithm for approximately locating h* and reliably determining a. Our empirical results indicate that for small random scale-free nets of degree exponent g, a=1/(g-1), and a grows as the nets become larger.Comment: Further work presented and conclusions revised, following referee report

    Phase Transitions and Oscillations in a Lattice Prey-Predator Model

    Full text link
    A coarse grained description of a two-dimensional prey-predator system is given in terms of a 3-state lattice model containing two control parameters: the spreading rates of preys and predators. The properties of the model are investigated by dynamical mean-field approximations and extensive numerical simulations. It is shown that the stationary state phase diagram is divided into two phases: a pure prey phase and a coexistence phase of preys and predators in which temporal and spatial oscillations can be present. The different type of phase transitions occuring at the boundary of the prey absorbing phase, as well as the crossover phenomena occuring between the oscillatory and non-oscillatory domains of the coexistence phase are studied. The importance of finite size effects are discussed and scaling relations between different quantities are established. Finally, physical arguments, based on the spatial structure of the model, are given to explain the underlying mechanism leading to oscillations.Comment: 11 pages, 13 figure

    Segregation in the annihilation of two-species reaction-diffusion processes on fractal scale-free networks

    Full text link
    In the reaction-diffusion process A+B→∅A+B \to \varnothing on random scale-free (SF) networks with the degree exponent Îł\gamma, the particle density decays with time in a power law with an exponent α\alpha when initial densities of each species are the same. The exponent α\alpha is α>1\alpha > 1 for 2<Îł<32 < \gamma < 3 and α=1\alpha=1 for γ≄3\gamma \ge 3. Here, we examine the reaction process on fractal SF networks, finding that α<1\alpha < 1 even for 2<Îł<32 < \gamma < 3. This slowly decaying behavior originates from the segregation effect: Fractal SF networks contain local hubs, which are repulsive to each other. Those hubs attract particles and accelerate the reaction, and then create domains containing the same species of particles. It follows that the reaction takes place at the non-hub boundaries between those domains and thus the particle density decays slowly. Since many real SF networks are fractal, the segregation effect has to be taken into account in the reaction kinetics among heterogeneous particles.Comment: 4 pages, 6 figure

    Languages cool as they expand: Allometric scaling and the decreasing need for new words

    Get PDF
    We analyze the occurrence frequencies of over 15 million words recorded in millions of books published during the past two centuries in seven different languages. For all languages and chronological subsets of the data we confirm that two scaling regimes characterize the word frequency distributions, with only the more common words obeying the classic Zipf law. Using corpora of unprecedented size, we test the allometric scaling relation between the corpus size and the vocabulary size of growing languages to demonstrate a decreasing marginal need for new words, a feature that is likely related to the underlying correlations between words. We calculate the annual growth fluctuations of word use which has a decreasing trend as the corpus size increases, indicating a slowdown in linguistic evolution following language expansion. This ‘‘cooling pattern’’ forms the basis of a third statistical regularity, which unlike the Zipf and the Heaps law, is dynamical in nature

    Invariants of Lie algebras extended over commutative algebras without unit

    Full text link
    We establish results about the second cohomology with coefficients in the trivial module, symmetric invariant bilinear forms and derivations of a Lie algebra extended over a commutative associative algebra without unit. These results provide a simple unified approach to a number of questions treated earlier in completely separated ways: periodization of semisimple Lie algebras (Anna Larsson), derivation algebras, with prescribed semisimple part, of nilpotent Lie algebras (Benoist), and presentations of affine Kac-Moody algebras.Comment: v3: added a footnote on p.10 about a wrong derivation of the correct statemen

    An algorithm for counting circuits: application to real-world and random graphs

    Full text link
    We introduce an algorithm which estimates the number of circuits in a graph as a function of their length. This approach provides analytical results for the typical entropy of circuits in sparse random graphs. When applied to real-world networks, it allows to estimate exponentially large numbers of circuits in polynomial time. We illustrate the method by studying a graph of the Internet structure.Comment: 7 pages, 3 figures, minor corrections, accepted versio
    • 

    corecore