21,722 research outputs found

    r-Process Nucleosynthesis in Shocked Surface Layers of O-Ne-Mg Cores

    Full text link
    We demonstrate that rapid expansion of the shocked surface layers of an O-Ne-Mg core following its collapse can result in r-process nucleosynthesis. As the supernova shock accelerates through these layers, it makes them expand so rapidly that free nucleons remain in disequilibrium with alpha-particles throughout most of the expansion. This allows heavy r-process isotopes including the actinides to form in spite of the very low initial neutron excess of the matter. We estimate that yields of heavy r-process nuclei from this site may be sufficient to explain the Galactic inventory of these isotopes.Comment: 11 pages, 1 figure, to appear in the Astrophysical Journal Letter

    Evolution of O Abundance Relative to Fe

    Get PDF
    We present a three-component mixing model for the evolution of O abundance relative to Fe, taking into account the contributions of the first very massive (> 100 solar masses) stars formed from Big Bang debris. We show that the observations of O and Fe abundances in metal-poor stars in the Galaxy by Israelian et al. and Boesgaard et al. can be well represented both qualitatively and quantitatively by this model. Under the assumption of an initial Fe ([Fe/H] = -3) and O inventory due to the prompt production by the first very massive stars, the data at -3 < [Fe/H] < -1 are interpreted to result from the addition of O and Fe only from type II supernovae (SNII) to the prompt inventory. At [Fe/H] = -1, SNII still contribute O while both SNII and type Ia supernovae contribute Fe. During this later stage, (O/Fe) sharply drops off to an asymptotic value of 0.8(O/Fe)_sun. The value of (O/Fe) for the prompt inventory at [Fe/H] = -3 is found to be (O/Fe) = 20(O/Fe)_sun. This result suggests that protogalaxies with low ``metallicities'' should exhibit high values of (O/Fe). The C/O ratio produced by the first very massive stars is expected to be much less than 1 so that all the C should be tied up as CO and that C dust and hydrocarbon compounds should be quite rare at epochs corresponding to [Fe/H] < -3.Comment: 25 pages, 8 postscript figures, to appear in Ap

    A Circumbinary Planet in Orbit Around the Short-Period White-Dwarf Eclipsing Binary RR Cae

    Get PDF
    By using six new determined mid-eclipse times together with those collected from the literature, we found that the Observed-Calculated (O-C) curve of RR Cae shows a cyclic change with a period of 11.9 years and an amplitude of 14.3s, while it undergoes an upward parabolic variation (revealing a long-term period increase at a rate of dP/dt =+4.18(+-0.20)x10^(-12). The cyclic change was analyzed for the light-travel time effect that arises from the gravitational influence of a third companion. The mass of the third body was determined to be M_3*sin i' = 4.2(+-0.4) M_{Jup} suggesting that it is a circumbinary giant planet when its orbital inclination is larger than 17.6 degree. The orbital separation of the circumbinary planet from the central eclipsing binary is about 5.3(+-0.6)AU. The period increase is opposite to the changes caused by angular momentum loss via magnetic braking or/and gravitational radiation, nor can it be explained by the mass transfer between both components because of its detached configuration. These indicate that the observed upward parabolic change is only a part of a long-period (longer than 26.3 years) cyclic variation, which may reveal the presence of another giant circumbinary planet in a wide orbit.Comment: It will be published in the MNRA

    Finemet versus ferrite: Pros and cons

    Get PDF

    Reexamining the temperature and neutron density conditions for r-process nucleosynthesis with augmented nuclear mass models

    Full text link
    We explore the effects of nuclear masses on the temperature and neutron density conditions required for r-process nucleosynthesis using four nuclear mass models augmented by the latest atomic mass evaluation. For each model we derive the conditions for producing the observed abundance peaks at mass numbers A ~ 80, 130, and 195 under the waiting-point approximation and further determine the sets of conditions that can best reproduce the r-process abundance patterns (r-patterns) inferred for the solar system and observed in metal-poor stars of the Milky Way halo. In broad agreement with previous studies, we find that (1) the conditions for producing abundance peaks at A ~ 80 and 195 tend to be very different, which suggests that, at least for some nuclear mass models, these two peaks are not produced simultaneously; (2) the typical conditions required by the critical waiting-point (CWP) nuclei with the N = 126 closed neutron shell overlap significantly with those required by the N=82 CWP nuclei, which enables coproduction of abundance peaks at A ~ 130 and 195 in accordance with observations of many metal-poor stars; and (3) the typical conditions required by the N = 82 CWP nuclei can reproduce the r-pattern observed in the metal-poor star HD 122563, which differs greatly from the solar r-pattern. We also examine how nuclear mass uncertainties affect the conditions required for the r-process and identify some key nuclei including76Ni to 78Ni, 82Zn, 131Cd, and 132Cd for precise mass measurements at rare-isotope beam facilities.Comment: 28 pages,9 figures,1 tabl

    Calorimetric Evidence of Strong-Coupling Multiband Superconductivity in Fe(Te0.57Se0.43) Single Crystal

    Get PDF
    We have investigated the specific heat of optimally-doped iron chalcogenide superconductor Fe(Te0.57Se0.43) with a high-quality single crystal sample. The electronic specific heat Ce of this sample has been successfully separated from the phonon contribution using the specific heat of a non-superconducting sample (Fe0.90Cu0.10)(Te0.57Se0.43) as a reference. The normal state Sommerfeld coefficient gamma_n of the superconducting sample is found to be ~ 26.6 mJ/mol K^2, indicating intermediate electronic correlation. The temperature dependence of Ce in the superconducting state can be best fitted using a double-gap model with 2Delta_s(0)/kBTc = 3.92 and 2Delta_l(0)/kBTc = 5.84. The large gap magnitudes derived from fitting, as well as the large specific heat jump of Delta_Ce(Tc)/gamma_n*Tc ~ 2.11, indicate strong-coupling superconductivity. Furthermore, the magnetic field dependence of specific heat shows strong evidence for multiband superconductivity
    corecore