12,550 research outputs found
Cavity optomechanics using an optically levitated nanosphere
Recently, remarkable advances have been made in coupling a number of high-Q
modes of nano-mechanical systems to high-finesse optical cavities, with the
goal of reaching regimes where quantum behavior can be observed and leveraged
toward new applications. To reach this regime, the coupling between these
systems and their thermal environments must be minimized. Here we propose a
novel approach to this problem, in which optically levitating a nano-mechanical
system can greatly reduce its thermal contact, while simultaneously eliminating
dissipation arising from clamping. Through the long coherence times allowed,
this approach potentially opens the door to ground-state cooling and coherent
manipulation of a single mesoscopic mechanical system or entanglement
generation between spatially separate systems, even in room temperature
environments. As an example, we show that these goals should be achievable when
the mechanical mode consists of the center-of-mass motion of a levitated
nanosphere.Comment: 33 pages, 6 figures, minor revisions, references adde
Graph-Based Shape Analysis Beyond Context-Freeness
We develop a shape analysis for reasoning about relational properties of data
structures. Both the concrete and the abstract domain are represented by
hypergraphs. The analysis is parameterized by user-supplied indexed graph
grammars to guide concretization and abstraction. This novel extension of
context-free graph grammars is powerful enough to model complex data structures
such as balanced binary trees with parent pointers, while preserving most
desirable properties of context-free graph grammars. One strength of our
analysis is that no artifacts apart from grammars are required from the user;
it thus offers a high degree of automation. We implemented our analysis and
successfully applied it to various programs manipulating AVL trees,
(doubly-linked) lists, and combinations of both
Resonance phenomena in ultracold dipole-dipole scattering
Elastic scattering resonances occurring in ultracold collisions of either
bosonic or fermionic polar molecules are investigated. The Born-Oppenheimer
adiabatic representation of the two-bodydynamics provides both a qualitative
classification scheme and a quantitative WKB quantization condition that
predicts several sequences of resonant states. It is found that the
near-threshold energy dependence of ultracold collision cross sections varies
significantly with the particle exchange symmetry, with bosonic systems showing
much smoother energy variations than their fermionic counterparts. Resonant
variations of the angular distributions in ultracold collisions are also
described.Comment: 19 pages, 6 figures, revtex4, submitted to J. Phys.
Combination of oncolytic adenovirus and luteolin exerts synergistic antitumor effects in colorectal cancer cells and a mouse model
In recent years, oncolytic viruses have attracted increasing interest due to their potent antitumor effects. Luteolin, a natural product, has additionally been observed to exhibit various pharmacological antitumor activities. Previously, a novel dual-targeting oncolytic adenovirus, complement decay-accelerating factor (CD55)-tumor necrosis factor ligand superfamily member 10 (TRAIL), was constructed, which exhibited significant growth inhibitory effects in various types of tumor cell. The present study investigated whether the combination of luteolin and CD55-TRAIL was able to exert a synergistic antitumor effect in colorectal carcinoma (CRC) cells. The cytotoxicity and tumor cell apoptosis mediated by combination treatment in CRC cells were detected via an MTT assay, Hoechst staining and western blotting, respectively. Tumor growth in vivo was examined in a CRC mouse xenograft model following various treatments. The results demonstrated that the addition of luteolin enhanced oncolytic adenovirus-mediated enhanced green fluorescent protein, early region 1A and TRAIL expression. The combination of CD55-TRAIL with luteolin synergistically inhibited tumor growth and promoted CRC cellular apoptosis in vitro and in vivo. Additionally, the combination of CD55-TRAIL with luteoli n significa ntly decrea sed cy totoxicit y in lung/bronchial normal epithelial cells, compared with single treatment
Magnetic Quantum Dot: A Magnetic Transmission Barrier and Resonator
We study the ballistic edge-channel transport in quantum wires with a
magnetic quantum dot, which is formed by two different magnetic fields B^* and
B_0 inside and outside the dot, respectively. We find that the electron states
located near the dot and the scattering of edge channels by the dot strongly
depend on whether B^* is parallel or antiparallel to B_0. For parallel fields,
two-terminal conductance as a function of channel energy is quantized except
for resonances, while, for antiparallel fields, it is not quantized and all
channels can be completely reflected in some energy ranges. All these features
are attributed to the characteristic magnetic confinements caused by nonuniform
fields.Comment: 4 pages, 4 figures, to be published in Physical Review Letter
Effects of the field modulation on the Hofstadter's spectrum
We study the effect of spatially modulated magnetic fields on the energy
spectrum of a two-dimensional (2D) Bloch electron. Taking into account four
kinds of modulated fields and using the method of direct diagonalization of the
Hamiltonian matrix, we calculate energy spectra with varying system parameters
(i.e., the kind of the modulation, the relative strength of the modulated field
to the uniform background field, and the period of the modulation) to elucidate
that the energy band structure sensitively depends on such parameters:
Inclusion of spatially modulated fields into a uniform field leads occurrence
of gap opening, gap closing, band crossing, and band broadening, resulting
distinctive energy band structure from the Hofstadter's spectrum. We also
discuss the effect of the field modulation on the symmetries appeared in the
Hofstadter's spectrum in detail.Comment: 7 pages (in two-column), 10 figures (including 2 tables
Hall conductance of Bloch electrons in a magnetic field
We study the energy spectrum and the quantized Hall conductance of electrons
in a two-dimensional periodic potential with perpendicular magnetic field
WITHOUT neglecting the coupling of the Landau bands. Remarkably, even for weak
Landau band coupling significant changes in the Hall conductance compared to
the one-band approximation of Hofstadter's butterfly are found. The principal
deviations are the rearrangement of subbands and unexpected subband
contributions to the Hall conductance.Comment: to appear in PRB; Revtex, 9 pages, 5 postscript figures; figures with
better resolution may be obtained from http://www.chaos.gwdg.d
Vibrational Spectra of a Mechanosensitive Channel
We report the simulated vibrational spectra of a mechanosensitive membrane channel in different gating states. Our results show that while linear absorption is insensitive to structural differences, linear dichroism and sum-frequency generation spectroscopies are sensitive to the orientation of the transmembrane helices, which is changing during the opening process. Linear dichroism cannot distinguish an intermediate structure from the closed structure, but sum-frequency generation can. In addition, we find that two-dimensional infrared spectroscopy can be used to distinguish all three investigated gating states of the mechanosensitive membrane channel.
Observation of electron-antineutrino disappearance at Daya Bay
The Daya Bay Reactor Neutrino Experiment has measured a non-zero value for
the neutrino mixing angle with a significance of 5.2 standard
deviations. Antineutrinos from six 2.9 GW reactors were detected in
six antineutrino detectors deployed in two near (flux-weighted baseline 470 m
and 576 m) and one far (1648 m) underground experimental halls. With a 43,000
ton-GW_{\rm th}-day livetime exposure in 55 days, 10416 (80376) electron
antineutrino candidates were detected at the far hall (near halls). The ratio
of the observed to expected number of antineutrinos at the far hall is
. A rate-only analysis
finds in a
three-neutrino framework.Comment: 5 figures. Version to appear in Phys. Rev. Let
- …
