42,017 research outputs found

    Specific heat and thermal conductivity of ferromagnetic magnons in Yttrium Iron Garnet

    Full text link
    The specific heat and thermal conductivity of the insulating ferrimagnet Y3_3Fe5_5O12_{12} (Yttrium Iron Garnet, YIG) single crystal were measured down to 50 mK. The ferromagnetic magnon specific heat CCm_m shows a characteristic T1.5T^{1.5} dependence down to 0.77 K. Below 0.77 K, a downward deviation is observed, which is attributed to the magnetic dipole-dipole interaction with typical magnitude of 104^{-4} eV. The ferromagnetic magnon thermal conductivity κm\kappa_m does not show the characteristic T2T^2 dependence below 0.8 K. To fit the κm\kappa_m data, both magnetic defect scattering effect and dipole-dipole interaction are taken into account. These results complete our understanding of the thermodynamic and thermal transport properties of the low-lying ferromagnetic magnons.Comment: 5 pages, 5 figure

    Extended Optical Model Analyses of Elastic Scattering and Fusion Cross Section Data for the 12^{12}C+208^{208}Pb System at Near-Coulomb-Barrier Energies by using a Folding Potential

    Full text link
    Simultaneous χ2\chi^{2} analyses are performed for elastic scattering and fusion cross section data for the 12^{12}C+208^{208}Pb system at near-Coulomb-barrier energies by using the extended optical model approach in which the polarization potential is decomposed into direct reaction (DR) and fusion parts. Use is made of the double folding potential as a bare potential. It is found that the experimental elastic scattering and fusion data are well reproduced without introducing any normalization factor for the double folding potential and also that both DR and fusion parts of the polarization potential determined from the χ2\chi^{2} analyses satisfy separately the dispersion relation. Furthermore, it is shown that the imaginary parts of both DR and fusion potentials at the strong absorption radius change very rapidly, which results in a typical threshold anomaly in the total imaginary potential as observed with tightly bound projectiles such as α\alpha-particle and 16^{16}O.Comment: 26 pages, 7 figures, submitted to Physical Review

    Clustering Coefficients of Protein-Protein Interaction Networks

    Full text link
    The properties of certain networks are determined by hidden variables that are not explicitly measured. The conditional probability (propagator) that a vertex with a given value of the hidden variable is connected to k of other vertices determines all measurable properties. We study hidden variable models and find an averaging approximation that enables us to obtain a general analytical result for the propagator. Analytic results showing the validity of the approximation are obtained. We apply hidden variable models to protein-protein interaction networks (PINs) in which the hidden variable is the association free-energy, determined by distributions that depend on biochemistry and evolution. We compute degree distributions as well as clustering coefficients of several PINs of different species; good agreement with measured data is obtained. For the human interactome two different parameter sets give the same degree distributions, but the computed clustering coefficients differ by a factor of about two. This shows that degree distributions are not sufficient to determine the properties of PINs.Comment: 16 pages, 3 figures, in Press PRE uses pdflate

    Micro Balloon Actuators for Aerodynamic Control

    Get PDF
    A robust, large-force, large-deflection micro balloon actuator for aerodynamic (manoeuvring) control of transonic aircraft has been developed. Using a novel process, high yield linear arrays of silicone balloons on a robust silicon substrate have been fabricated that can deflect vertically in excess of one mm. Balloon actuators have been tested under cyclic conditions to assess reliability. The actuators have been characterized in a wind tunnel to assess their suitability as aerodynamic control surfaces and flight-tested on a jet fighter to assess their resistance to varied temperatures and pressures at high velocity

    Dynamics of Vortex Core Switching in Ferromagnetic Nanodisks

    Full text link
    Dynamics of magnetic vortex core switching in nanometer-scale permalloy disk, having a single vortex ground state, was investigated by micromagnetic modeling. When an in-plane magnetic field pulse with an appropriate strength and duration is applied to the vortex structure, additional two vortices, i.e., a circular- and an anti-vortex, are created near the original vortex core. Sequentially, the vortex-antivortex pair annihilates. A spin wave is created at the annihilation point and propagated through the entire element; the relaxed state for the system is the single vortex state with a switched vortex core.Comment: to appear in Appl. Phys. Let

    q-deformed Supersymmetric t-J Model with a Boundary

    Full text link
    The q-deformed supersymmetric t-J model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the quantum affine superalgebra Uq[sl(21)^]U_q[\hat{sl(2|1)}]. We give the bosonization of the boundary states. We give an integral expression of the correlation functions of the boundary model, and derive the difference equations which they satisfy.Comment: LaTex file 18 page

    A Note on the Generalization of the GEMS Approach

    Full text link
    This paper is a supplement of our earlier work JHEP 0410 (2004) 011[gr-qc/0409107].We map the vector potential of charged black holes into GEMS and find that its effect on the thermal spectrum is the same as that on the black hole side, i.e., it will induce a chemical potential in the thermal spectrum which is the same as that in the charged black holes.We also argue that the generalization of GEMS approach to non-stationary motions is not possible.Comment: Latex file, 10 pages, no figure; v2: minor corrections; v3: revised with title changed, one new section added and references adde
    corecore