4,717 research outputs found

    Nanostructuring Graphene by Dense Electronic Excitation

    Get PDF
    The ability to manufacture tailored graphene nanostructures is a key factor to fully exploit its enormous technological potential. We have investigated nanostructures created in graphene by swift heavy ion induced folding. For our experiments, single layers of graphene exfoliated on various substrates and freestanding graphene have been irradiated and analyzed by atomic force and high resolution transmission electron microscopy as well as Raman spectroscopy. We show that the dense electronic excitation in the wake of the traversing ion yields characteristic nanostructures each of which may be fabricated by choosing the proper irradiation conditions. These nanostructures include unique morphologies such as closed bilayer edges with a given chirality or nanopores within supported as well as freestanding graphene. The length and orientation of the nanopore, and thus of the associated closed bilayer edge, may be simply controlled by the direction of the incoming ion beam. In freestanding graphene, swift heavy ion irradiation induces extremely small openings, offering the possibility to perforate graphene membranes in a controlled way.Comment: 16 pages, 5 figures, submitted to Nanotechnolog

    Dark energy and dark matter from cosmological observations

    Full text link
    The present status of our knowledge about the dark matter and dark energy is reviewed. Bounds on the content of cold and hot dark matter from cosmological observations are discussed in some detail. I also review current bounds on the physical properties of dark energy, mainly its equation of state and effective speed of sound.Comment: 12 pages, 4 figures, to appear in Lepton-Photon 2005 proceedings, added figure and typos correcte

    Gemcitabine and carboplatin in intensively pretreated patients with metastatic breast cancer

    Get PDF
    Background: Patients with metastatic breast cancer (MBC) are increasingly exposed to anthracyclines and taxanes either during treatment of primary breast cancer or during initial therapy of metastatic disease. The combination of gemcitabine and carboplatin was therefore investigated as an anthracycline- and taxane-free treatment option. Patients and Methods: MBC patients previously treated with chemotherapy were enrolled in a multicenter phase II study. Treatment consisted of gemcitabine (1,000 mg/m(2) i.v. on days 1 and 8) and carboplatin (AUC 4 i.v. on day 1) applied every 3 weeks. Results: Thirty-nine patients were recruited, and a total of 207 treatment cycles were applied with a median of 5 cycles per patient. One complete response and 11 partial responses were observed for an overall response rate of 31% (95% CI: 17-48%). Twelve patients (31%) had stable disease. Median time to progression was 5.3 months (95% CI: 2.6-6.7 months) and median overall survival from start of treatment was 13.2 months (95% CI: 8.7-16.7 months). Grade 3/4 hematological toxicity included leukopenia (59%/5%), thrombo-cytopenia (26%/23%) and anemia (10%/0%). Nonhematological toxicity was rarely severe. Conclusion: Combination chemotherapy with gemcitabine and carboplatin is an effective and generally well-tolerated treatment option for intensively pretreated patients with MBC. Due to a considerable incidence of severe thrombocytopenia it would be reasonable to consider starting gemcitabine at the lower dose level of 800 mg/m(2). Copyright (c) 2008 S. Karger AG, Basel

    The fastest unbound star in our Galaxy ejected by a thermonuclear supernova

    Get PDF
    Hypervelocity stars (HVS) travel with velocities so high, that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US\,708. Travelling with a velocity of 1200kms1\sim1200\,{\rm km\,s^{-1}}, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVS. Furthermore, we discovered US\,708 to be a fast rotator. According to our binary evolution model it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova.Comment: 16 pages report, 20 pages supplementary material

    Parity Violation in gamma proton Compton Scattering

    Full text link
    A measurement of parity-violating spin-dependent gamma proton Compton scattering will provide a theoretically clean determination of the parity-violating pion-nucleon coupling constant hπNN(1)h_{\pi NN}^{(1)}. We calculate the leading parity-violating amplitude arising from one-loop pion graphs in chiral perturbation theory. An asymmetry of ~5 10^{-8} is estimated for Compton scattering of 100 MeV photons.Comment: 6 pages, 1 figure, latex. Reference adde

    Real time approach to tunneling in open quantum systems: decoherence and anomalous diffusion

    Get PDF
    Macroscopic quantum tunneling is described using the master equation for the reduced Wigner function of an open quantum system at zero temperature. Our model consists of a particle trapped in a cubic potential interacting with an environment characterized by dissipative and normal and anomalous diffusion coefficients. A representation based on the energy eigenfunctions of the isolated system, i.e. the system uncoupled to the environment, is used to write the reduced Wigner function, and the master equation becomes simpler in that representation. The energy eigenfunctions computed in a WKB approximation incorporate the tunneling effect of the isolated system and the effect of the environment is described by an equation that it is in many ways similar to a Fokker-Planck equation. Decoherence is easily identified from the master equation and we find that when the decoherence time is much shorter than the tunneling time the master equation can be approximated by a Kramers like equation describing thermal activation due to the zero point fluctuations of the quantum environment. The effect of anomalous diffusion can be dealt with perturbatively and its overall effect is to inhibit tunneling.Comment: 25 pages, 1 figur

    Chiral 2pi exchange at order four and peripheral NN scattering

    Get PDF
    We calculate the impact of the complete set of two-pion exchange contributions at chiral order four (also known as next-to-next-to-next-to-leading order, N3LO) on peripheral partial waves of nucleon-nucleon scattering. Our calculations are based upon the analytical studies by Kaiser. It turns out that the contribution of order four is substantially smaller than the one of order three, indicating convergence of the chiral expansion. We compare the prediction from chiral pion-exchange with the corresponding one from conventional meson-theory as represented by the Bonn Full Model and find, in general, good agreement. Our calculations provide a sound basis for investigating the issue whether the low-energy constants determined from pi-N lead to reasonable predictions for NN.Comment: 22 pages RevTex including 11 figure
    corecore