133,636 research outputs found

    Spin effects in hard exclusive electroproduction of mesons

    Full text link
    In this talk various spin effects in hard exclusive electroproduction of mesons are briefly reviewed. The data are discussed in the light of recent theoretical calculations within the frame work of the handbag approach.Comment: 11 pages, 12 figures, using Latex, talk presented at the conference in honor of Prof. A. Efremov's 75th birthday held at Trento, July, 200

    Local dynamics in high-order harmonic generation using Bohmian trajectories

    Full text link
    We investigate high-order harmonic generation from a Bohmian-mechanical perspective, and find that the innermost part of the core, represented by a single Bohmian trajectory, leads to the main contributions to the high-harmonic spectra. Using time-frequency analysis, we associate this central Bohmian trajectory to an ensemble of unbound classical trajectories leaving and returning to the core, in agreement with the three step model. In the Bohmian scenario, this physical picture builds up non-locally near the core via the quantum mechanical phase of the wavefunction. This implies that the flow of the wavefunction far from the core alters the central Bohmian trajectory. We also show how this phase degrades in time for the peripheral Bohmian trajectories as they leave the core region.Comment: 7 pages, 3 figures; the manuscript has been considerably extended and modified with regard to the previous version

    The effect of bandwidth in scale-free network traffic

    Get PDF
    We model information traffic on scale-free networks by introducing the bandwidth as the delivering ability of links. We focus on the effects of bandwidth on the packet delivering ability of the traffic system to better understand traffic dynamic in real network systems. Such ability can be measured by a phase transition from free flow to congestion. Two cases of node capacity C are considered, i.e., C=constant and C is proportional to the node's degree. We figured out the decrease of the handling ability of the system together with the movement of the optimal local routing coefficient αc\alpha_c, induced by the restriction of bandwidth. Interestingly, for low bandwidth, the same optimal value of αc\alpha_c emerges for both cases of node capacity. We investigate the number of packets of each node in the free flow state and provide analytical explanations for the optimal value of αc\alpha_c. Average packets traveling time is also studied. Our study may be useful for evaluating the overall efficiency of networked traffic systems, and for allevating traffic jam in such systems.Comment: 6 pages, 4 figure

    Reversible Embedding to Covers Full of Boundaries

    Full text link
    In reversible data embedding, to avoid overflow and underflow problem, before data embedding, boundary pixels are recorded as side information, which may be losslessly compressed. The existing algorithms often assume that a natural image has little boundary pixels so that the size of side information is small. Accordingly, a relatively high pure payload could be achieved. However, there actually may exist a lot of boundary pixels in a natural image, implying that, the size of side information could be very large. Therefore, when to directly use the existing algorithms, the pure embedding capacity may be not sufficient. In order to address this problem, in this paper, we present a new and efficient framework to reversible data embedding in images that have lots of boundary pixels. The core idea is to losslessly preprocess boundary pixels so that it can significantly reduce the side information. Experimental results have shown the superiority and applicability of our work

    Symmetry-preserving Loop Regularization and Renormalization of QFTs

    Full text link
    A new symmetry-preserving loop regularization method proposed in \cite{ylw} is further investigated. It is found that its prescription can be understood by introducing a regulating distribution function to the proper-time formalism of irreducible loop integrals. The method simulates in many interesting features to the momentum cutoff, Pauli-Villars and dimensional regularization. The loop regularization method is also simple and general for the practical calculations to higher loop graphs and can be applied to both underlying and effective quantum field theories including gauge, chiral, supersymmetric and gravitational ones as the new method does not modify either the lagrangian formalism or the space-time dimension of original theory. The appearance of characteristic energy scale McM_c and sliding energy scale ÎĽs\mu_s offers a systematic way for studying the renormalization-group evolution of gauge theories in the spirit of Wilson-Kadanoff and for exploring important effects of higher dimensional interaction terms in the infrared regime.Comment: 13 pages, Revtex, extended modified version, more references adde

    The Reversed q-Exponential Functional Relation

    Full text link
    After obtaining some useful identities, we prove an additional functional relation for qq exponentials with reversed order of multiplication, as well as the well known direct one in a completely rigorous manner.Comment: 6 pages, LaTeX, no figure
    • …
    corecore