32,015 research outputs found
Quantum correlations in topological quantum phase transitions
We study the quantum correlations in a 2D system that possesses a topological
quantum phase transition. The quantumness of two-body correlations is measured
by quantum discord. We calculate both the correlation of two local spins and
that of an arbitrary spin with the rest of the lattice. It is notable that
local spins are classically correlated, while the quantum correlation is hidden
in the global lattice. This is different from other systems which are not
topologically orderd. Moreover, the mutual information and global quantum
discord show critical behavior in the topological quantum phase transition.Comment: 6 pages, 3 figure
Quasi-adiabatic Continuation of Quantum States: The Stability of Topological Ground State Degeneracy and Emergent Gauge Invariance
We define for quantum many-body systems a quasi-adiabatic continuation of
quantum states. The continuation is valid when the Hamiltonian has a gap, or
else has a sufficiently small low-energy density of states, and thus is away
from a quantum phase transition. This continuation takes local operators into
local operators, while approximately preserving the ground state expectation
values. We apply this continuation to the problem of gauge theories coupled to
matter, and propose a new distinction, perimeter law versus "zero law" to
identify confinement. We also apply the continuation to local bosonic models
with emergent gauge theories. We show that local gauge invariance is
topological and cannot be broken by any local perturbations in the bosonic
models in either continuous or discrete gauge groups. We show that the ground
state degeneracy in emergent discrete gauge theories is a robust property of
the bosonic model, and we argue that the robustness of local gauge invariance
in the continuous case protects the gapless gauge boson.Comment: 15 pages, 6 figure
Continuous topological phase transitions between clean quantum Hall states
Continuous transitions between states with the {\em same} symmetry but
different topological orders are studied. Clean quantum Hall (QH) liquids with
neutral quasiparticles are shown to have such transitions. For clean bilayer
(nnm) states, a continous transition to other QH states (including non-Abelian
states) can be driven by increasing interlayer repulsion/tunneling. The
effective theories describing the critical points at some transitions are
derived.Comment: 4 pages, RevTeX, 2 eps figure
Topological Nematic States and Non-Abelian Lattice Dislocations
An exciting new prospect in condensed matter physics is the possibility of
realizing fractional quantum Hall (FQH) states in simple lattice models without
a large external magnetic field. A fundamental question is whether
qualitatively new states can be realized on the lattice as compared with
ordinary fractional quantum Hall states. Here we propose new symmetry-enriched
topological states, topological nematic states, which are a dramatic
consequence of the interplay between the lattice translation symmetry and
topological properties of these fractional Chern insulators. When a partially
filled flat band has a Chern number N, it can be mapped to an N-layer quantum
Hall system. We find that lattice dislocations can act as wormholes connecting
the different layers and effectively change the topology of the space. Lattice
dislocations become defects with non-trivial quantum dimension, even when the
FQH state being realized is by itself Abelian. Our proposal leads to the
possibility of realizing the physics of topologically ordered states on high
genus surfaces in the lab even though the sample has only the disk geometry.Comment: 10 pages, 6 figures. Several new sections added in v2, including
sections on even/odd effect for numerical diagnostics, analysis of domain
walls, and effective topological field theor
Neutrino-cooled Accretion Disks around Spinning Black Holes
We calculate the structure of accretion disk around a spinning black hole for
accretion rates 0.01 - 10 M_sun/s. The model is fully relativistic and treats
accurately the disk microphysics including neutrino emissivity, opacity,
electron degeneracy, and nuclear composition. We find that the accretion flow
always regulates itself to a mildly degenerate state with the proton-to-nucleon
ratio Y_e ~ 0.1 and becomes very neutron-rich. The disk has a well defined
"ignition" radius where neutrino flux raises dramatically, cooling becomes
efficient, and Y_e suddenly drops. We also calculate other characteristic radii
of the disk, including the neutrino-opaque and neutrino-trapping radii, and
show their dependence on the accretion rate. Accretion disks around
fast-rotating black holes produce intense neutrino fluxes which may deposit
enough energy above the disk to generate a GRB jet.Comment: 4 pages, 3 figures; to be published in AIP Conference Proceedings
"Gamma Ray Bursts in the Swift Era," Nov. 29 - Dec. 2, 2005, Washington, D
Modification of nucleon properties in nuclear matter and finite nuclei
We present a model for the description of nuclear matter and finite nuclei,
and at the same time, for the study of medium modifications of nucleon
properties. The nucleons are described as nontopological solitons which
interact through the self-consistent exchange of scalar and vector mesons. The
model explicitly incorporates quark degrees of freedom into nuclear many-body
systems and provides satisfactory results on the nuclear properties. The
present model predicts a significant increase of the nucleon radius at normal
nuclear matter density. It is very interesting to see the nucleon properties
change from the nuclear surface to the nuclear interior.Comment: 22 pages, 10 figure
Broken symmetry, hyper-fermions, and universal conductance in transport through a fractional quantum Hall edge
We have found solution to a model of tunneling between a multi-channel Fermi
liquid reservoir and an edge of the principal fractional quantum Hall liquid
(FQHL) in the strong coupling limit. The solution explains how the absence of
the time-reversal symmetry at high energies due to chiral edge propagation
makes the universal two-terminal conductance of the FQHL fractionally quantized
and different from that of a 1D Tomonaga-Luttinger liquid wire, where a similar
model but preserving the time-reversal symmetry predicts unsuppressed
free-electron conductance.Comment: 5 twocolumn pages in RevTex, no figures, more explanations added, a
short version was published in JETP Letters, vol.74, 87 (2001
Binding Transition in Quantum Hall Edge States
We study a class of Abelian quantum Hall (QH) states which are topologically
unstable (T-unstable). We find that the T-unstable QH states can have a phase
transition on the edge which causes a binding between electrons and reduces the
number of gapless edge branches. After the binding transition, the
single-electron tunneling into the edge gains a finite energy gap, and only
certain multi-electron co-tunneling (such as three-electron co-tunneling for
edges) can be gapless. Similar phenomenon also appear for edge state
on the boundary between certain QH states. For example edge on the boundary
between and states only allow three-electron co-tunneling at
low energies after the binding transition.Comment: 4 pages, RevTeX, 1 figur
Current and charge distributions of the fractional quantum Hall liquids with edges
An effective Chern-Simons theory for the quantum Hall states with edges is
studied by treating the edge and bulk properties in a unified fashion. An exact
steady-state solution is obtained for a half-plane geometry using the
Wiener-Hopf method. For a Hall bar with finite width, it is proved that the
charge and current distributions do not have a diverging singularity. It is
shown that there exists only a single mode even for the hierarchical states,
and the mode is not localized exponentially near the edges. Thus this result
differs from the edge picture in which electrons are treated as strictly one
dimensional chiral Luttinger liquids.Comment: 21 pages, REV TeX fil
- …